This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgz.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srgz.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| srgz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | srglz | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgz.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srgz.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | srgz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 6 | 1 4 5 2 3 | issrg | ⊢ ( 𝑅 ∈ SRing ↔ ( 𝑅 ∈ CMnd ∧ ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
| 7 | 6 | simp3bi | ⊢ ( 𝑅 ∈ SRing → ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) |
| 8 | 7 | r19.21bi | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) |
| 9 | 8 | simprld | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ) → ( 0 · 𝑥 ) = 0 ) |
| 10 | 9 | ralrimiva | ⊢ ( 𝑅 ∈ SRing → ∀ 𝑥 ∈ 𝐵 ( 0 · 𝑥 ) = 0 ) |
| 11 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 0 · 𝑥 ) = ( 0 · 𝑋 ) ) | |
| 12 | 11 | eqeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 0 · 𝑥 ) = 0 ↔ ( 0 · 𝑋 ) = 0 ) ) |
| 13 | 12 | rspcv | ⊢ ( 𝑋 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 0 · 𝑥 ) = 0 → ( 0 · 𝑋 ) = 0 ) ) |
| 14 | 10 13 | mpan9 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = 0 ) |