This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringrghm . (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srglmhm.b | |- B = ( Base ` R ) |
|
| srglmhm.t | |- .x. = ( .r ` R ) |
||
| Assertion | srgrmhm | |- ( ( R e. SRing /\ X e. B ) -> ( x e. B |-> ( x .x. X ) ) e. ( R MndHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srglmhm.b | |- B = ( Base ` R ) |
|
| 2 | srglmhm.t | |- .x. = ( .r ` R ) |
|
| 3 | srgmnd | |- ( R e. SRing -> R e. Mnd ) |
|
| 4 | 3 3 | jca | |- ( R e. SRing -> ( R e. Mnd /\ R e. Mnd ) ) |
| 5 | 4 | adantr | |- ( ( R e. SRing /\ X e. B ) -> ( R e. Mnd /\ R e. Mnd ) ) |
| 6 | 1 2 | srgcl | |- ( ( R e. SRing /\ x e. B /\ X e. B ) -> ( x .x. X ) e. B ) |
| 7 | 6 | 3com23 | |- ( ( R e. SRing /\ X e. B /\ x e. B ) -> ( x .x. X ) e. B ) |
| 8 | 7 | 3expa | |- ( ( ( R e. SRing /\ X e. B ) /\ x e. B ) -> ( x .x. X ) e. B ) |
| 9 | 8 | fmpttd | |- ( ( R e. SRing /\ X e. B ) -> ( x e. B |-> ( x .x. X ) ) : B --> B ) |
| 10 | 3anrot | |- ( ( X e. B /\ a e. B /\ b e. B ) <-> ( a e. B /\ b e. B /\ X e. B ) ) |
|
| 11 | 3anass | |- ( ( X e. B /\ a e. B /\ b e. B ) <-> ( X e. B /\ ( a e. B /\ b e. B ) ) ) |
|
| 12 | 10 11 | bitr3i | |- ( ( a e. B /\ b e. B /\ X e. B ) <-> ( X e. B /\ ( a e. B /\ b e. B ) ) ) |
| 13 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 14 | 1 13 2 | srgdir | |- ( ( R e. SRing /\ ( a e. B /\ b e. B /\ X e. B ) ) -> ( ( a ( +g ` R ) b ) .x. X ) = ( ( a .x. X ) ( +g ` R ) ( b .x. X ) ) ) |
| 15 | 12 14 | sylan2br | |- ( ( R e. SRing /\ ( X e. B /\ ( a e. B /\ b e. B ) ) ) -> ( ( a ( +g ` R ) b ) .x. X ) = ( ( a .x. X ) ( +g ` R ) ( b .x. X ) ) ) |
| 16 | 15 | anassrs | |- ( ( ( R e. SRing /\ X e. B ) /\ ( a e. B /\ b e. B ) ) -> ( ( a ( +g ` R ) b ) .x. X ) = ( ( a .x. X ) ( +g ` R ) ( b .x. X ) ) ) |
| 17 | 1 13 | srgacl | |- ( ( R e. SRing /\ a e. B /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) |
| 18 | 17 | 3expb | |- ( ( R e. SRing /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` R ) b ) e. B ) |
| 19 | 18 | adantlr | |- ( ( ( R e. SRing /\ X e. B ) /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` R ) b ) e. B ) |
| 20 | oveq1 | |- ( x = ( a ( +g ` R ) b ) -> ( x .x. X ) = ( ( a ( +g ` R ) b ) .x. X ) ) |
|
| 21 | eqid | |- ( x e. B |-> ( x .x. X ) ) = ( x e. B |-> ( x .x. X ) ) |
|
| 22 | ovex | |- ( ( a ( +g ` R ) b ) .x. X ) e. _V |
|
| 23 | 20 21 22 | fvmpt | |- ( ( a ( +g ` R ) b ) e. B -> ( ( x e. B |-> ( x .x. X ) ) ` ( a ( +g ` R ) b ) ) = ( ( a ( +g ` R ) b ) .x. X ) ) |
| 24 | 19 23 | syl | |- ( ( ( R e. SRing /\ X e. B ) /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x .x. X ) ) ` ( a ( +g ` R ) b ) ) = ( ( a ( +g ` R ) b ) .x. X ) ) |
| 25 | oveq1 | |- ( x = a -> ( x .x. X ) = ( a .x. X ) ) |
|
| 26 | ovex | |- ( a .x. X ) e. _V |
|
| 27 | 25 21 26 | fvmpt | |- ( a e. B -> ( ( x e. B |-> ( x .x. X ) ) ` a ) = ( a .x. X ) ) |
| 28 | oveq1 | |- ( x = b -> ( x .x. X ) = ( b .x. X ) ) |
|
| 29 | ovex | |- ( b .x. X ) e. _V |
|
| 30 | 28 21 29 | fvmpt | |- ( b e. B -> ( ( x e. B |-> ( x .x. X ) ) ` b ) = ( b .x. X ) ) |
| 31 | 27 30 | oveqan12d | |- ( ( a e. B /\ b e. B ) -> ( ( ( x e. B |-> ( x .x. X ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( x .x. X ) ) ` b ) ) = ( ( a .x. X ) ( +g ` R ) ( b .x. X ) ) ) |
| 32 | 31 | adantl | |- ( ( ( R e. SRing /\ X e. B ) /\ ( a e. B /\ b e. B ) ) -> ( ( ( x e. B |-> ( x .x. X ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( x .x. X ) ) ` b ) ) = ( ( a .x. X ) ( +g ` R ) ( b .x. X ) ) ) |
| 33 | 16 24 32 | 3eqtr4d | |- ( ( ( R e. SRing /\ X e. B ) /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x .x. X ) ) ` ( a ( +g ` R ) b ) ) = ( ( ( x e. B |-> ( x .x. X ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( x .x. X ) ) ` b ) ) ) |
| 34 | 33 | ralrimivva | |- ( ( R e. SRing /\ X e. B ) -> A. a e. B A. b e. B ( ( x e. B |-> ( x .x. X ) ) ` ( a ( +g ` R ) b ) ) = ( ( ( x e. B |-> ( x .x. X ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( x .x. X ) ) ` b ) ) ) |
| 35 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 36 | 1 35 | srg0cl | |- ( R e. SRing -> ( 0g ` R ) e. B ) |
| 37 | 36 | adantr | |- ( ( R e. SRing /\ X e. B ) -> ( 0g ` R ) e. B ) |
| 38 | oveq1 | |- ( x = ( 0g ` R ) -> ( x .x. X ) = ( ( 0g ` R ) .x. X ) ) |
|
| 39 | ovex | |- ( ( 0g ` R ) .x. X ) e. _V |
|
| 40 | 38 21 39 | fvmpt | |- ( ( 0g ` R ) e. B -> ( ( x e. B |-> ( x .x. X ) ) ` ( 0g ` R ) ) = ( ( 0g ` R ) .x. X ) ) |
| 41 | 37 40 | syl | |- ( ( R e. SRing /\ X e. B ) -> ( ( x e. B |-> ( x .x. X ) ) ` ( 0g ` R ) ) = ( ( 0g ` R ) .x. X ) ) |
| 42 | 1 2 35 | srglz | |- ( ( R e. SRing /\ X e. B ) -> ( ( 0g ` R ) .x. X ) = ( 0g ` R ) ) |
| 43 | 41 42 | eqtrd | |- ( ( R e. SRing /\ X e. B ) -> ( ( x e. B |-> ( x .x. X ) ) ` ( 0g ` R ) ) = ( 0g ` R ) ) |
| 44 | 9 34 43 | 3jca | |- ( ( R e. SRing /\ X e. B ) -> ( ( x e. B |-> ( x .x. X ) ) : B --> B /\ A. a e. B A. b e. B ( ( x e. B |-> ( x .x. X ) ) ` ( a ( +g ` R ) b ) ) = ( ( ( x e. B |-> ( x .x. X ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( x .x. X ) ) ` b ) ) /\ ( ( x e. B |-> ( x .x. X ) ) ` ( 0g ` R ) ) = ( 0g ` R ) ) ) |
| 45 | 1 1 13 13 35 35 | ismhm | |- ( ( x e. B |-> ( x .x. X ) ) e. ( R MndHom R ) <-> ( ( R e. Mnd /\ R e. Mnd ) /\ ( ( x e. B |-> ( x .x. X ) ) : B --> B /\ A. a e. B A. b e. B ( ( x e. B |-> ( x .x. X ) ) ` ( a ( +g ` R ) b ) ) = ( ( ( x e. B |-> ( x .x. X ) ) ` a ) ( +g ` R ) ( ( x e. B |-> ( x .x. X ) ) ` b ) ) /\ ( ( x e. B |-> ( x .x. X ) ) ` ( 0g ` R ) ) = ( 0g ` R ) ) ) ) |
| 46 | 5 44 45 | sylanbrc | |- ( ( R e. SRing /\ X e. B ) -> ( x e. B |-> ( x .x. X ) ) e. ( R MndHom R ) ) |