This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014) (Revised by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srg0cl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srg0cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | srg0cl | ⊢ ( 𝑅 ∈ SRing → 0 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srg0cl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srg0cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | srgmnd | ⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd ) | |
| 4 | 1 2 | mndidcl | ⊢ ( 𝑅 ∈ Mnd → 0 ∈ 𝐵 ) |
| 5 | 3 4 | syl | ⊢ ( 𝑅 ∈ SRing → 0 ∈ 𝐵 ) |