This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite semiring sum multiplied by a constant, analogous to gsummulc1 . (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgsummulcr.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srgsummulcr.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| srgsummulcr.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| srgsummulcr.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| srgsummulcr.r | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | ||
| srgsummulcr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| srgsummulcr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| srgsummulcr.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
| srgsummulcr.n | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | ||
| Assertion | srgsummulcr | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) · 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgsummulcr.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srgsummulcr.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | srgsummulcr.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | srgsummulcr.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | srgsummulcr.r | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | |
| 6 | srgsummulcr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | srgsummulcr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | srgsummulcr.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 9 | srgsummulcr.n | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) | |
| 10 | srgcmn | ⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ CMnd ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 12 | srgmnd | ⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 14 | 1 4 | srgrmhm | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑌 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) |
| 15 | 5 7 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑌 ) = ( 𝑋 · 𝑌 ) ) | |
| 17 | oveq1 | ⊢ ( 𝑥 = ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → ( 𝑥 · 𝑌 ) = ( ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) · 𝑌 ) ) | |
| 18 | 1 2 11 13 6 15 8 9 16 17 | gsummhm2 | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) · 𝑌 ) ) |