This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgpcomp.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| srgpcomp.m | ⊢ × = ( .r ‘ 𝑅 ) | ||
| srgpcomp.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
| srgpcomp.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| srgpcomp.r | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | ||
| srgpcomp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| srgpcomp.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| srgpcomp.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | ||
| srgpcomp.c | ⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) | ||
| srgpcompp.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | srgpcompp | ⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( ( 𝑁 + 1 ) ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgpcomp.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| 2 | srgpcomp.m | ⊢ × = ( .r ‘ 𝑅 ) | |
| 3 | srgpcomp.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 4 | srgpcomp.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 5 | srgpcomp.r | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | |
| 6 | srgpcomp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 7 | srgpcomp.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 8 | srgpcomp.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | |
| 9 | srgpcomp.c | ⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) | |
| 10 | srgpcompp.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 11 | 3 1 | mgpbas | ⊢ 𝑆 = ( Base ‘ 𝐺 ) |
| 12 | 3 | srgmgp | ⊢ ( 𝑅 ∈ SRing → 𝐺 ∈ Mnd ) |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 14 | 11 4 13 10 6 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ) |
| 15 | 11 4 13 8 7 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ) |
| 16 | 1 2 | srgass | ⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) → ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
| 17 | 5 14 15 6 16 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
| 18 | 1 2 3 4 5 6 7 8 9 | srgpcomp | ⊢ ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) = ( ( 𝑁 ↑ 𝐴 ) × ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) |
| 20 | 1 2 | srgass | ⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ) ) → ( ( ( 𝑁 ↑ 𝐴 ) × 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) = ( ( 𝑁 ↑ 𝐴 ) × ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) |
| 21 | 5 14 6 15 20 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 𝐴 ) × 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) = ( ( 𝑁 ↑ 𝐴 ) × ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) |
| 22 | 19 21 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) = ( ( ( 𝑁 ↑ 𝐴 ) × 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) |
| 23 | 3 2 | mgpplusg | ⊢ × = ( +g ‘ 𝐺 ) |
| 24 | 11 4 23 | mulgnn0p1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝑁 + 1 ) ↑ 𝐴 ) = ( ( 𝑁 ↑ 𝐴 ) × 𝐴 ) ) |
| 25 | 13 10 6 24 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) ↑ 𝐴 ) = ( ( 𝑁 ↑ 𝐴 ) × 𝐴 ) ) |
| 26 | 25 | eqcomd | ⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐴 ) × 𝐴 ) = ( ( 𝑁 + 1 ) ↑ 𝐴 ) ) |
| 27 | 26 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 𝐴 ) × 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) = ( ( ( 𝑁 + 1 ) ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) |
| 28 | 17 22 27 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( ( 𝑁 + 1 ) ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) |