This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgpcomp.s | |- S = ( Base ` R ) |
|
| srgpcomp.m | |- .X. = ( .r ` R ) |
||
| srgpcomp.g | |- G = ( mulGrp ` R ) |
||
| srgpcomp.e | |- .^ = ( .g ` G ) |
||
| srgpcomp.r | |- ( ph -> R e. SRing ) |
||
| srgpcomp.a | |- ( ph -> A e. S ) |
||
| srgpcomp.b | |- ( ph -> B e. S ) |
||
| srgpcomp.k | |- ( ph -> K e. NN0 ) |
||
| srgpcomp.c | |- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
||
| Assertion | srgpcomp | |- ( ph -> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgpcomp.s | |- S = ( Base ` R ) |
|
| 2 | srgpcomp.m | |- .X. = ( .r ` R ) |
|
| 3 | srgpcomp.g | |- G = ( mulGrp ` R ) |
|
| 4 | srgpcomp.e | |- .^ = ( .g ` G ) |
|
| 5 | srgpcomp.r | |- ( ph -> R e. SRing ) |
|
| 6 | srgpcomp.a | |- ( ph -> A e. S ) |
|
| 7 | srgpcomp.b | |- ( ph -> B e. S ) |
|
| 8 | srgpcomp.k | |- ( ph -> K e. NN0 ) |
|
| 9 | srgpcomp.c | |- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
|
| 10 | oveq1 | |- ( x = 0 -> ( x .^ B ) = ( 0 .^ B ) ) |
|
| 11 | 10 | oveq1d | |- ( x = 0 -> ( ( x .^ B ) .X. A ) = ( ( 0 .^ B ) .X. A ) ) |
| 12 | 10 | oveq2d | |- ( x = 0 -> ( A .X. ( x .^ B ) ) = ( A .X. ( 0 .^ B ) ) ) |
| 13 | 11 12 | eqeq12d | |- ( x = 0 -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( 0 .^ B ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) ) |
| 14 | 13 | imbi2d | |- ( x = 0 -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( 0 .^ B ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) ) ) |
| 15 | oveq1 | |- ( x = y -> ( x .^ B ) = ( y .^ B ) ) |
|
| 16 | 15 | oveq1d | |- ( x = y -> ( ( x .^ B ) .X. A ) = ( ( y .^ B ) .X. A ) ) |
| 17 | 15 | oveq2d | |- ( x = y -> ( A .X. ( x .^ B ) ) = ( A .X. ( y .^ B ) ) ) |
| 18 | 16 17 | eqeq12d | |- ( x = y -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) ) |
| 19 | 18 | imbi2d | |- ( x = y -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) ) ) |
| 20 | oveq1 | |- ( x = ( y + 1 ) -> ( x .^ B ) = ( ( y + 1 ) .^ B ) ) |
|
| 21 | 20 | oveq1d | |- ( x = ( y + 1 ) -> ( ( x .^ B ) .X. A ) = ( ( ( y + 1 ) .^ B ) .X. A ) ) |
| 22 | 20 | oveq2d | |- ( x = ( y + 1 ) -> ( A .X. ( x .^ B ) ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
| 23 | 21 22 | eqeq12d | |- ( x = ( y + 1 ) -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) |
| 24 | 23 | imbi2d | |- ( x = ( y + 1 ) -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) ) |
| 25 | oveq1 | |- ( x = K -> ( x .^ B ) = ( K .^ B ) ) |
|
| 26 | 25 | oveq1d | |- ( x = K -> ( ( x .^ B ) .X. A ) = ( ( K .^ B ) .X. A ) ) |
| 27 | 25 | oveq2d | |- ( x = K -> ( A .X. ( x .^ B ) ) = ( A .X. ( K .^ B ) ) ) |
| 28 | 26 27 | eqeq12d | |- ( x = K -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) ) |
| 29 | 28 | imbi2d | |- ( x = K -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) ) ) |
| 30 | 3 1 | mgpbas | |- S = ( Base ` G ) |
| 31 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 32 | 3 31 | ringidval | |- ( 1r ` R ) = ( 0g ` G ) |
| 33 | 30 32 4 | mulg0 | |- ( B e. S -> ( 0 .^ B ) = ( 1r ` R ) ) |
| 34 | 7 33 | syl | |- ( ph -> ( 0 .^ B ) = ( 1r ` R ) ) |
| 35 | 34 | oveq1d | |- ( ph -> ( ( 0 .^ B ) .X. A ) = ( ( 1r ` R ) .X. A ) ) |
| 36 | 1 2 31 | srgridm | |- ( ( R e. SRing /\ A e. S ) -> ( A .X. ( 1r ` R ) ) = A ) |
| 37 | 5 6 36 | syl2anc | |- ( ph -> ( A .X. ( 1r ` R ) ) = A ) |
| 38 | 34 | oveq2d | |- ( ph -> ( A .X. ( 0 .^ B ) ) = ( A .X. ( 1r ` R ) ) ) |
| 39 | 1 2 31 | srglidm | |- ( ( R e. SRing /\ A e. S ) -> ( ( 1r ` R ) .X. A ) = A ) |
| 40 | 5 6 39 | syl2anc | |- ( ph -> ( ( 1r ` R ) .X. A ) = A ) |
| 41 | 37 38 40 | 3eqtr4rd | |- ( ph -> ( ( 1r ` R ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) |
| 42 | 35 41 | eqtrd | |- ( ph -> ( ( 0 .^ B ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) |
| 43 | 3 | srgmgp | |- ( R e. SRing -> G e. Mnd ) |
| 44 | 5 43 | syl | |- ( ph -> G e. Mnd ) |
| 45 | 44 | adantr | |- ( ( ph /\ y e. NN0 ) -> G e. Mnd ) |
| 46 | simpr | |- ( ( ph /\ y e. NN0 ) -> y e. NN0 ) |
|
| 47 | 7 | adantr | |- ( ( ph /\ y e. NN0 ) -> B e. S ) |
| 48 | 3 2 | mgpplusg | |- .X. = ( +g ` G ) |
| 49 | 30 4 48 | mulgnn0p1 | |- ( ( G e. Mnd /\ y e. NN0 /\ B e. S ) -> ( ( y + 1 ) .^ B ) = ( ( y .^ B ) .X. B ) ) |
| 50 | 45 46 47 49 | syl3anc | |- ( ( ph /\ y e. NN0 ) -> ( ( y + 1 ) .^ B ) = ( ( y .^ B ) .X. B ) ) |
| 51 | 50 | oveq1d | |- ( ( ph /\ y e. NN0 ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( ( ( y .^ B ) .X. B ) .X. A ) ) |
| 52 | 9 | eqcomd | |- ( ph -> ( B .X. A ) = ( A .X. B ) ) |
| 53 | 52 | adantr | |- ( ( ph /\ y e. NN0 ) -> ( B .X. A ) = ( A .X. B ) ) |
| 54 | 53 | oveq2d | |- ( ( ph /\ y e. NN0 ) -> ( ( y .^ B ) .X. ( B .X. A ) ) = ( ( y .^ B ) .X. ( A .X. B ) ) ) |
| 55 | 5 | adantr | |- ( ( ph /\ y e. NN0 ) -> R e. SRing ) |
| 56 | 30 4 45 46 47 | mulgnn0cld | |- ( ( ph /\ y e. NN0 ) -> ( y .^ B ) e. S ) |
| 57 | 6 | adantr | |- ( ( ph /\ y e. NN0 ) -> A e. S ) |
| 58 | 1 2 | srgass | |- ( ( R e. SRing /\ ( ( y .^ B ) e. S /\ B e. S /\ A e. S ) ) -> ( ( ( y .^ B ) .X. B ) .X. A ) = ( ( y .^ B ) .X. ( B .X. A ) ) ) |
| 59 | 55 56 47 57 58 | syl13anc | |- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. B ) .X. A ) = ( ( y .^ B ) .X. ( B .X. A ) ) ) |
| 60 | 1 2 | srgass | |- ( ( R e. SRing /\ ( ( y .^ B ) e. S /\ A e. S /\ B e. S ) ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( ( y .^ B ) .X. ( A .X. B ) ) ) |
| 61 | 55 56 57 47 60 | syl13anc | |- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( ( y .^ B ) .X. ( A .X. B ) ) ) |
| 62 | 54 59 61 | 3eqtr4d | |- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. B ) .X. A ) = ( ( ( y .^ B ) .X. A ) .X. B ) ) |
| 63 | 51 62 | eqtrd | |- ( ( ph /\ y e. NN0 ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( ( ( y .^ B ) .X. A ) .X. B ) ) |
| 64 | 63 | adantr | |- ( ( ( ph /\ y e. NN0 ) /\ ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( ( ( y .^ B ) .X. A ) .X. B ) ) |
| 65 | oveq1 | |- ( ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( ( A .X. ( y .^ B ) ) .X. B ) ) |
|
| 66 | 1 2 | srgass | |- ( ( R e. SRing /\ ( A e. S /\ ( y .^ B ) e. S /\ B e. S ) ) -> ( ( A .X. ( y .^ B ) ) .X. B ) = ( A .X. ( ( y .^ B ) .X. B ) ) ) |
| 67 | 55 57 56 47 66 | syl13anc | |- ( ( ph /\ y e. NN0 ) -> ( ( A .X. ( y .^ B ) ) .X. B ) = ( A .X. ( ( y .^ B ) .X. B ) ) ) |
| 68 | 50 | eqcomd | |- ( ( ph /\ y e. NN0 ) -> ( ( y .^ B ) .X. B ) = ( ( y + 1 ) .^ B ) ) |
| 69 | 68 | oveq2d | |- ( ( ph /\ y e. NN0 ) -> ( A .X. ( ( y .^ B ) .X. B ) ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
| 70 | 67 69 | eqtrd | |- ( ( ph /\ y e. NN0 ) -> ( ( A .X. ( y .^ B ) ) .X. B ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
| 71 | 65 70 | sylan9eqr | |- ( ( ( ph /\ y e. NN0 ) /\ ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
| 72 | 64 71 | eqtrd | |- ( ( ( ph /\ y e. NN0 ) /\ ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
| 73 | 72 | ex | |- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) |
| 74 | 73 | expcom | |- ( y e. NN0 -> ( ph -> ( ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) ) |
| 75 | 74 | a2d | |- ( y e. NN0 -> ( ( ph -> ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ph -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) ) |
| 76 | 14 19 24 29 42 75 | nn0ind | |- ( K e. NN0 -> ( ph -> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) ) |
| 77 | 8 76 | mpcom | |- ( ph -> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) |