This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtneg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ - 𝐴 ) = ( i · ( √ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 3 | 2 | negcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → - 𝐴 ∈ ℂ ) |
| 4 | sqrtval | ⊢ ( - 𝐴 ∈ ℂ → ( √ ‘ - 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ - 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
| 6 | sqrtneglem | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) | |
| 7 | ax-icn | ⊢ i ∈ ℂ | |
| 8 | resqrtcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) | |
| 9 | 8 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℂ ) |
| 10 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( √ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( √ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 11 | 7 9 10 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( i · ( √ ‘ 𝐴 ) ) ∈ ℂ ) |
| 12 | oveq1 | ⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( 𝑥 ↑ 2 ) = ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) ) | |
| 13 | 12 | eqeq1d | ⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( ( 𝑥 ↑ 2 ) = - 𝐴 ↔ ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ) ) |
| 14 | fveq2 | ⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ) | |
| 15 | 14 | breq2d | ⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( i · 𝑥 ) = ( i · ( i · ( √ ‘ 𝐴 ) ) ) ) | |
| 17 | neleq1 | ⊢ ( ( i · 𝑥 ) = ( i · ( i · ( √ ‘ 𝐴 ) ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) |
| 19 | 13 15 18 | 3anbi123d | ⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) ) |
| 20 | 19 | rspcev | ⊢ ( ( ( i · ( √ ‘ 𝐴 ) ) ∈ ℂ ∧ ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 21 | 11 6 20 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 22 | sqrmo | ⊢ ( - 𝐴 ∈ ℂ → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) | |
| 23 | 3 22 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 24 | reu5 | ⊢ ( ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) | |
| 25 | 21 23 24 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 26 | 19 | riota2 | ⊢ ( ( ( i · ( √ ‘ 𝐴 ) ) ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) → ( ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( i · ( √ ‘ 𝐴 ) ) ) ) |
| 27 | 11 25 26 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( i · ( √ ‘ 𝐴 ) ) ) ) |
| 28 | 6 27 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( i · ( √ ‘ 𝐴 ) ) ) |
| 29 | 5 28 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ - 𝐴 ) = ( i · ( √ ‘ 𝐴 ) ) ) |