This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of square root function. (Contributed by Mario Carneiro, 8-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtval | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ↑ 2 ) = 𝑦 ↔ ( 𝑥 ↑ 2 ) = 𝐴 ) ) | |
| 2 | 1 | 3anbi1d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑥 ↑ 2 ) = 𝑦 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
| 3 | 2 | riotabidv | ⊢ ( 𝑦 = 𝐴 → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑦 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
| 4 | df-sqrt | ⊢ √ = ( 𝑦 ∈ ℂ ↦ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑦 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) | |
| 5 | riotaex | ⊢ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∈ V | |
| 6 | 3 4 5 | fvmpt | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |