This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between square root and squares. (Contributed by NM, 31-Jul-1999) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtsq2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrtcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | sqrtge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐴 ) ) ) |
| 4 | sq11 | ⊢ ( ( ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐴 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( √ ‘ 𝐴 ) = 𝐵 ) ) | |
| 5 | 3 4 | sylan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( √ ‘ 𝐴 ) = 𝐵 ) ) |
| 6 | resqrtth | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) | |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 8 | 7 | eqeq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = ( 𝐵 ↑ 2 ) ) ) |
| 9 | 5 8 | bitr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 ↑ 2 ) ) ) |