This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtneg | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` -u A ) = ( _i x. ( sqrt ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
| 3 | 2 | negcld | |- ( ( A e. RR /\ 0 <_ A ) -> -u A e. CC ) |
| 4 | sqrtval | |- ( -u A e. CC -> ( sqrt ` -u A ) = ( iota_ x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
|
| 5 | 3 4 | syl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` -u A ) = ( iota_ x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
| 6 | sqrtneglem | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) |
|
| 7 | ax-icn | |- _i e. CC |
|
| 8 | resqrtcl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
|
| 9 | 8 | recnd | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. CC ) |
| 10 | mulcl | |- ( ( _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( _i x. ( sqrt ` A ) ) e. CC ) |
|
| 11 | 7 9 10 | sylancr | |- ( ( A e. RR /\ 0 <_ A ) -> ( _i x. ( sqrt ` A ) ) e. CC ) |
| 12 | oveq1 | |- ( x = ( _i x. ( sqrt ` A ) ) -> ( x ^ 2 ) = ( ( _i x. ( sqrt ` A ) ) ^ 2 ) ) |
|
| 13 | 12 | eqeq1d | |- ( x = ( _i x. ( sqrt ` A ) ) -> ( ( x ^ 2 ) = -u A <-> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A ) ) |
| 14 | fveq2 | |- ( x = ( _i x. ( sqrt ` A ) ) -> ( Re ` x ) = ( Re ` ( _i x. ( sqrt ` A ) ) ) ) |
|
| 15 | 14 | breq2d | |- ( x = ( _i x. ( sqrt ` A ) ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) ) ) |
| 16 | oveq2 | |- ( x = ( _i x. ( sqrt ` A ) ) -> ( _i x. x ) = ( _i x. ( _i x. ( sqrt ` A ) ) ) ) |
|
| 17 | neleq1 | |- ( ( _i x. x ) = ( _i x. ( _i x. ( sqrt ` A ) ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) |
|
| 18 | 16 17 | syl | |- ( x = ( _i x. ( sqrt ` A ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) |
| 19 | 13 15 18 | 3anbi123d | |- ( x = ( _i x. ( sqrt ` A ) ) -> ( ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) ) |
| 20 | 19 | rspcev | |- ( ( ( _i x. ( sqrt ` A ) ) e. CC /\ ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) -> E. x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 21 | 11 6 20 | syl2anc | |- ( ( A e. RR /\ 0 <_ A ) -> E. x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 22 | sqrmo | |- ( -u A e. CC -> E* x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
|
| 23 | 3 22 | syl | |- ( ( A e. RR /\ 0 <_ A ) -> E* x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 24 | reu5 | |- ( E! x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( E. x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ E* x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
|
| 25 | 21 23 24 | sylanbrc | |- ( ( A e. RR /\ 0 <_ A ) -> E! x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 26 | 19 | riota2 | |- ( ( ( _i x. ( sqrt ` A ) ) e. CC /\ E! x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> ( ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( _i x. ( sqrt ` A ) ) ) ) |
| 27 | 11 25 26 | syl2anc | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( _i x. ( sqrt ` A ) ) ) ) |
| 28 | 6 27 | mpbid | |- ( ( A e. RR /\ 0 <_ A ) -> ( iota_ x e. CC ( ( x ^ 2 ) = -u A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( _i x. ( sqrt ` A ) ) ) |
| 29 | 5 28 | eqtrd | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` -u A ) = ( _i x. ( sqrt ` A ) ) ) |