This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of subspace sum. (Contributed by NM, 15-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shscl.1 | ⊢ 𝐴 ∈ Sℋ | |
| shscl.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shscli | ⊢ ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shscl.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shscl.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | shsss | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ |
| 5 | sh0 | ⊢ ( 𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴 ) | |
| 6 | 1 5 | ax-mp | ⊢ 0ℎ ∈ 𝐴 |
| 7 | sh0 | ⊢ ( 𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵 ) | |
| 8 | 2 7 | ax-mp | ⊢ 0ℎ ∈ 𝐵 |
| 9 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 10 | 9 | hvaddlidi | ⊢ ( 0ℎ +ℎ 0ℎ ) = 0ℎ |
| 11 | 10 | eqcomi | ⊢ 0ℎ = ( 0ℎ +ℎ 0ℎ ) |
| 12 | rspceov | ⊢ ( ( 0ℎ ∈ 𝐴 ∧ 0ℎ ∈ 𝐵 ∧ 0ℎ = ( 0ℎ +ℎ 0ℎ ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 0ℎ = ( 𝑥 +ℎ 𝑦 ) ) | |
| 13 | 6 8 11 12 | mp3an | ⊢ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 0ℎ = ( 𝑥 +ℎ 𝑦 ) |
| 14 | 1 2 | shseli | ⊢ ( 0ℎ ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 0ℎ = ( 𝑥 +ℎ 𝑦 ) ) |
| 15 | 13 14 | mpbir | ⊢ 0ℎ ∈ ( 𝐴 +ℋ 𝐵 ) |
| 16 | 4 15 | pm3.2i | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ∧ 0ℎ ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 17 | 1 2 | shseli | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) |
| 18 | 1 2 | shseli | ⊢ ( 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) |
| 19 | shaddcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑧 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑧 +ℎ 𝑣 ) ∈ 𝐴 ) | |
| 20 | 1 19 | mp3an1 | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑧 +ℎ 𝑣 ) ∈ 𝐴 ) |
| 21 | 20 | ad2ant2r | ⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ) → ( 𝑧 +ℎ 𝑣 ) ∈ 𝐴 ) |
| 22 | 21 | ad2ant2r | ⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( 𝑧 +ℎ 𝑣 ) ∈ 𝐴 ) |
| 23 | shaddcl | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑤 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑤 +ℎ 𝑢 ) ∈ 𝐵 ) | |
| 24 | 2 23 | mp3an1 | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑤 +ℎ 𝑢 ) ∈ 𝐵 ) |
| 25 | 24 | ad2ant2l | ⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ) → ( 𝑤 +ℎ 𝑢 ) ∈ 𝐵 ) |
| 26 | 25 | ad2ant2r | ⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( 𝑤 +ℎ 𝑢 ) ∈ 𝐵 ) |
| 27 | oveq12 | ⊢ ( ( 𝑥 = ( 𝑧 +ℎ 𝑤 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) → ( 𝑥 +ℎ 𝑦 ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) | |
| 28 | 27 | ad2ant2l | ⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( 𝑥 +ℎ 𝑦 ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
| 29 | 1 | sheli | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℋ ) |
| 30 | 1 | sheli | ⊢ ( 𝑣 ∈ 𝐴 → 𝑣 ∈ ℋ ) |
| 31 | 29 30 | anim12i | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ ) ) |
| 32 | 2 | sheli | ⊢ ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ℋ ) |
| 33 | 2 | sheli | ⊢ ( 𝑢 ∈ 𝐵 → 𝑢 ∈ ℋ ) |
| 34 | 32 33 | anim12i | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) ) |
| 35 | hvadd4 | ⊢ ( ( ( 𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ ) ∧ ( 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ ) ) → ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) | |
| 36 | 31 34 35 | syl2an | ⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
| 37 | 36 | an4s | ⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ) → ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
| 38 | 37 | ad2ant2r | ⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) = ( ( 𝑧 +ℎ 𝑤 ) +ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
| 39 | 28 38 | eqtr4d | ⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( 𝑥 +ℎ 𝑦 ) = ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) ) |
| 40 | rspceov | ⊢ ( ( ( 𝑧 +ℎ 𝑣 ) ∈ 𝐴 ∧ ( 𝑤 +ℎ 𝑢 ) ∈ 𝐵 ∧ ( 𝑥 +ℎ 𝑦 ) = ( ( 𝑧 +ℎ 𝑣 ) +ℎ ( 𝑤 +ℎ 𝑢 ) ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) | |
| 41 | 22 26 39 40 | syl3anc | ⊢ ( ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ∧ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
| 42 | 41 | ancoms | ⊢ ( ( ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
| 43 | 42 | exp43 | ⊢ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑥 = ( 𝑧 +ℎ 𝑤 ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) ) ) |
| 44 | 43 | rexlimivv | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑥 = ( 𝑧 +ℎ 𝑤 ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) ) |
| 45 | 44 | com3l | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑥 = ( 𝑧 +ℎ 𝑤 ) → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) ) |
| 46 | 45 | rexlimivv | ⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) |
| 47 | 46 | imp | ⊢ ( ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) ∧ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
| 48 | 17 18 47 | syl2anb | ⊢ ( ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
| 49 | 1 2 | shseli | ⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 +ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
| 50 | 48 49 | sylibr | ⊢ ( ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 51 | 50 | rgen2 | ⊢ ∀ 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) |
| 52 | shmulcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝑣 ∈ 𝐴 ) → ( 𝑥 ·ℎ 𝑣 ) ∈ 𝐴 ) | |
| 53 | 1 52 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑣 ∈ 𝐴 ) → ( 𝑥 ·ℎ 𝑣 ) ∈ 𝐴 ) |
| 54 | 53 | adantrr | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ( 𝑥 ·ℎ 𝑣 ) ∈ 𝐴 ) |
| 55 | shmulcl | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝑢 ∈ 𝐵 ) → ( 𝑥 ·ℎ 𝑢 ) ∈ 𝐵 ) | |
| 56 | 2 55 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑢 ∈ 𝐵 ) → ( 𝑥 ·ℎ 𝑢 ) ∈ 𝐵 ) |
| 57 | 56 | adantrr | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) → ( 𝑥 ·ℎ 𝑢 ) ∈ 𝐵 ) |
| 58 | 57 | adantrl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ( 𝑥 ·ℎ 𝑢 ) ∈ 𝐵 ) |
| 59 | oveq2 | ⊢ ( 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( 𝑥 ·ℎ 𝑦 ) = ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) ) | |
| 60 | 59 | adantl | ⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) → ( 𝑥 ·ℎ 𝑦 ) = ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
| 61 | 60 | ad2antll | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ( 𝑥 ·ℎ 𝑦 ) = ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) ) |
| 62 | id | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) | |
| 63 | ax-hvdistr1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) | |
| 64 | 62 30 33 63 | syl3an | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) |
| 65 | 64 | 3expb | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ) → ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) |
| 66 | 65 | adantrrr | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ( 𝑥 ·ℎ ( 𝑣 +ℎ 𝑢 ) ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) |
| 67 | 61 66 | eqtrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ( 𝑥 ·ℎ 𝑦 ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) |
| 68 | rspceov | ⊢ ( ( ( 𝑥 ·ℎ 𝑣 ) ∈ 𝐴 ∧ ( 𝑥 ·ℎ 𝑢 ) ∈ 𝐵 ∧ ( 𝑥 ·ℎ 𝑦 ) = ( ( 𝑥 ·ℎ 𝑣 ) +ℎ ( 𝑥 ·ℎ 𝑢 ) ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) | |
| 69 | 54 58 67 68 | syl3anc | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
| 70 | 69 | ancoms | ⊢ ( ( ( 𝑣 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) ) ∧ 𝑥 ∈ ℂ ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
| 71 | 70 | exp42 | ⊢ ( 𝑣 ∈ 𝐴 → ( 𝑢 ∈ 𝐵 → ( 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( 𝑥 ∈ ℂ → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) ) ) |
| 72 | 71 | imp | ⊢ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( 𝑥 ∈ ℂ → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) ) |
| 73 | 72 | rexlimivv | ⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) → ( 𝑥 ∈ ℂ → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) ) |
| 74 | 73 | impcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝑦 = ( 𝑣 +ℎ 𝑢 ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
| 75 | 18 74 | sylan2b | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
| 76 | 1 2 | shseli | ⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 𝐵 ( 𝑥 ·ℎ 𝑦 ) = ( 𝑓 +ℎ 𝑔 ) ) |
| 77 | 75 76 | sylibr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 78 | 77 | rgen2 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) |
| 79 | 51 78 | pm3.2i | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 80 | issh2 | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ↔ ( ( ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ∧ 0ℎ ∈ ( 𝐴 +ℋ 𝐵 ) ) ∧ ( ∀ 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( 𝐴 +ℋ 𝐵 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) ) | |
| 81 | 16 79 80 | mpbir2an | ⊢ ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ |