This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| shincl.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shunssi | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shincl.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | 1 | sheli | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ ) |
| 4 | ax-hvaddid | ⊢ ( 𝑥 ∈ ℋ → ( 𝑥 +ℎ 0ℎ ) = 𝑥 ) | |
| 5 | 4 | eqcomd | ⊢ ( 𝑥 ∈ ℋ → 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) |
| 7 | sh0 | ⊢ ( 𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵 ) | |
| 8 | 2 7 | ax-mp | ⊢ 0ℎ ∈ 𝐵 |
| 9 | rspceov | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 0ℎ ∈ 𝐵 ∧ 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) | |
| 10 | 8 9 | mp3an2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 11 | 6 10 | mpdan | ⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 12 | 2 | sheli | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ ) |
| 13 | hvaddlid | ⊢ ( 𝑥 ∈ ℋ → ( 0ℎ +ℎ 𝑥 ) = 𝑥 ) | |
| 14 | 13 | eqcomd | ⊢ ( 𝑥 ∈ ℋ → 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) |
| 15 | 12 14 | syl | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) |
| 16 | sh0 | ⊢ ( 𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴 ) | |
| 17 | 1 16 | ax-mp | ⊢ 0ℎ ∈ 𝐴 |
| 18 | rspceov | ⊢ ( ( 0ℎ ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) | |
| 19 | 17 18 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 20 | 15 19 | mpdan | ⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 21 | 11 20 | jaoi | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 22 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 23 | 1 2 | shseli | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 24 | 21 22 23 | 3imtr4i | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 25 | 24 | ssriv | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) |