This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a union is the subspace sum of spans. (Contributed by NM, 9-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spanun | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 | ⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( 𝐴 ∪ 𝐵 ) = ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) ) ) |
| 3 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( span ‘ 𝐴 ) = ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ 𝐵 ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ↔ ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ 𝐵 ) ) ) ) |
| 6 | uneq2 | ⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) = ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) ) = ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) ) |
| 8 | fveq2 | ⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( span ‘ 𝐵 ) = ( span ‘ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ 𝐵 ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ 𝐵 ) ) ↔ ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) ) ) |
| 11 | sseq1 | ⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( 𝐴 ⊆ ℋ ↔ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ⊆ ℋ ) ) | |
| 12 | sseq1 | ⊢ ( ℋ = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( ℋ ⊆ ℋ ↔ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ⊆ ℋ ) ) | |
| 13 | ssid | ⊢ ℋ ⊆ ℋ | |
| 14 | 11 12 13 | elimhyp | ⊢ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ⊆ ℋ |
| 15 | sseq1 | ⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( 𝐵 ⊆ ℋ ↔ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ⊆ ℋ ) ) | |
| 16 | sseq1 | ⊢ ( ℋ = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( ℋ ⊆ ℋ ↔ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ⊆ ℋ ) ) | |
| 17 | 15 16 13 | elimhyp | ⊢ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ⊆ ℋ |
| 18 | 14 17 | spanuni | ⊢ ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) |
| 19 | 5 10 18 | dedth2h | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ) |