This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spanss | ⊢ ( ( 𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵 ) → ( span ‘ 𝐴 ) ⊆ ( span ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ 𝑥 → 𝐴 ⊆ 𝑥 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Sℋ ) → ( 𝐵 ⊆ 𝑥 → 𝐴 ⊆ 𝑥 ) ) |
| 3 | 2 | ss2rabdv | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥 } ⊆ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| 4 | intss | ⊢ ( { 𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥 } ⊆ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } → ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥 } ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ⊆ 𝐵 → ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥 } ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥 } ) |
| 7 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℋ ) → 𝐴 ⊆ ℋ ) | |
| 8 | 7 | ancoms | ⊢ ( ( 𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ ℋ ) |
| 9 | spanval | ⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) = ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵 ) → ( span ‘ 𝐴 ) = ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| 11 | spanval | ⊢ ( 𝐵 ⊆ ℋ → ( span ‘ 𝐵 ) = ∩ { 𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥 } ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵 ) → ( span ‘ 𝐵 ) = ∩ { 𝑥 ∈ Sℋ ∣ 𝐵 ⊆ 𝑥 } ) |
| 13 | 6 10 12 | 3sstr4d | ⊢ ( ( 𝐵 ⊆ ℋ ∧ 𝐴 ⊆ 𝐵 ) → ( span ‘ 𝐴 ) ⊆ ( span ‘ 𝐵 ) ) |