This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fsuppco . Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppcolem.f | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) | |
| fsuppcolem.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 –1-1→ 𝑌 ) | ||
| Assertion | fsuppcolem | ⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppcolem.f | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) | |
| 2 | fsuppcolem.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 –1-1→ 𝑌 ) | |
| 3 | cnvco | ⊢ ◡ ( 𝐹 ∘ 𝐺 ) = ( ◡ 𝐺 ∘ ◡ 𝐹 ) | |
| 4 | 3 | imaeq1i | ⊢ ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) |
| 5 | imaco | ⊢ ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) | |
| 6 | 4 5 | eqtri | ⊢ ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 7 | df-f1 | ⊢ ( 𝐺 : 𝑋 –1-1→ 𝑌 ↔ ( 𝐺 : 𝑋 ⟶ 𝑌 ∧ Fun ◡ 𝐺 ) ) | |
| 8 | 7 | simprbi | ⊢ ( 𝐺 : 𝑋 –1-1→ 𝑌 → Fun ◡ 𝐺 ) |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → Fun ◡ 𝐺 ) |
| 10 | imafi | ⊢ ( ( Fun ◡ 𝐺 ∧ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) → ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ∈ Fin ) | |
| 11 | 9 1 10 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ∈ Fin ) |
| 12 | 6 11 | eqeltrid | ⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |