This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve closures. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hmeocls | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) = ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | hmeocnvcn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 3 | 1 | cncls2i | ⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) ⊆ ( ◡ ◡ 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) ⊆ ( ◡ ◡ 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 5 | imacnvcnv | ⊢ ( ◡ ◡ 𝐹 “ 𝐴 ) = ( 𝐹 “ 𝐴 ) | |
| 6 | 5 | fveq2i | ⊢ ( ( cls ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) = ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) |
| 7 | imacnvcnv | ⊢ ( ◡ ◡ 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) | |
| 8 | 4 6 7 | 3sstr3g | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 9 | hmeocn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 10 | 1 | cnclsi | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) |
| 11 | 9 10 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) |
| 12 | 8 11 | eqssd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) = ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |