This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoord | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smodm2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → Ord 𝐴 ) | |
| 2 | simprl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐶 ∈ 𝐴 ) | |
| 3 | ordelord | ⊢ ( ( Ord 𝐴 ∧ 𝐶 ∈ 𝐴 ) → Ord 𝐶 ) | |
| 4 | 1 2 3 | syl2an2r | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → Ord 𝐶 ) |
| 5 | simprr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐷 ∈ 𝐴 ) | |
| 6 | ordelord | ⊢ ( ( Ord 𝐴 ∧ 𝐷 ∈ 𝐴 ) → Ord 𝐷 ) | |
| 7 | 1 5 6 | syl2an2r | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → Ord 𝐷 ) |
| 8 | ordtri3or | ⊢ ( ( Ord 𝐶 ∧ Ord 𝐷 ) → ( 𝐶 ∈ 𝐷 ∨ 𝐶 = 𝐷 ∨ 𝐷 ∈ 𝐶 ) ) | |
| 9 | simp3 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) | |
| 10 | smoel2 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐷 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) | |
| 11 | 10 | expr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝐶 ∈ 𝐷 → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |
| 12 | 11 | adantrl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ∈ 𝐷 → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |
| 13 | 12 | 3impia | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 ∈ 𝐷 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) |
| 14 | 9 13 | 2thd | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 ∈ 𝐷 ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |
| 15 | 14 | 3expia | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ∈ 𝐷 → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) ) |
| 16 | ordirr | ⊢ ( Ord 𝐶 → ¬ 𝐶 ∈ 𝐶 ) | |
| 17 | 4 16 | syl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ 𝐶 ∈ 𝐶 ) |
| 18 | 17 | 3adant3 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ 𝐶 ∈ 𝐶 ) |
| 19 | simp3 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → 𝐶 = 𝐷 ) | |
| 20 | 18 19 | neleqtrd | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ 𝐶 ∈ 𝐷 ) |
| 21 | smofvon2 | ⊢ ( Smo 𝐹 → ( 𝐹 ‘ 𝐶 ) ∈ On ) | |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ On ) |
| 23 | eloni | ⊢ ( ( 𝐹 ‘ 𝐶 ) ∈ On → Ord ( 𝐹 ‘ 𝐶 ) ) | |
| 24 | ordirr | ⊢ ( Ord ( 𝐹 ‘ 𝐶 ) → ¬ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐶 ) ) | |
| 25 | 22 23 24 | 3syl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐶 ) ) |
| 26 | 25 | 3adant3 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐶 ) ) |
| 27 | 19 | fveq2d | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ( 𝐹 ‘ 𝐶 ) = ( 𝐹 ‘ 𝐷 ) ) |
| 28 | 26 27 | neleqtrd | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) |
| 29 | 20 28 | 2falsed | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |
| 30 | 29 | 3expia | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 = 𝐷 → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) ) |
| 31 | 7 | 3adant3 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → Ord 𝐷 ) |
| 32 | ordn2lp | ⊢ ( Ord 𝐷 → ¬ ( 𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ¬ ( 𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ) ) |
| 34 | pm3.2 | ⊢ ( 𝐷 ∈ 𝐶 → ( 𝐶 ∈ 𝐷 → ( 𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ) ) ) | |
| 35 | 34 | 3ad2ant3 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∈ 𝐷 → ( 𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ) ) ) |
| 36 | 33 35 | mtod | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ¬ 𝐶 ∈ 𝐷 ) |
| 37 | 22 23 | syl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → Ord ( 𝐹 ‘ 𝐶 ) ) |
| 38 | 37 | 3adant3 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → Ord ( 𝐹 ‘ 𝐶 ) ) |
| 39 | ordn2lp | ⊢ ( Ord ( 𝐹 ‘ 𝐶 ) → ¬ ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ¬ ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) |
| 41 | smoel2 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) | |
| 42 | 41 | adantrlr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) |
| 43 | 42 | 3impb | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) |
| 44 | pm3.21 | ⊢ ( ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 46 | 40 45 | mtod | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ¬ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) |
| 47 | 36 46 | 2falsed | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |
| 48 | 47 | 3expia | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐷 ∈ 𝐶 → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) ) |
| 49 | 15 30 48 | 3jaod | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐶 ∈ 𝐷 ∨ 𝐶 = 𝐷 ∨ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) ) |
| 50 | 8 49 | syl5 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( Ord 𝐶 ∧ Ord 𝐷 ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) ) |
| 51 | 4 7 50 | mp2and | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |