This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smofvon2 | ⊢ ( Smo 𝐹 → ( 𝐹 ‘ 𝐵 ) ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsmo2 | ⊢ ( Smo 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 2 | 1 | simp1bi | ⊢ ( Smo 𝐹 → 𝐹 : dom 𝐹 ⟶ On ) |
| 3 | ffvelcdm | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ On ∧ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐵 ) ∈ On ) | |
| 4 | 3 | expcom | ⊢ ( 𝐵 ∈ dom 𝐹 → ( 𝐹 : dom 𝐹 ⟶ On → ( 𝐹 ‘ 𝐵 ) ∈ On ) ) |
| 5 | 2 4 | syl5 | ⊢ ( 𝐵 ∈ dom 𝐹 → ( Smo 𝐹 → ( 𝐹 ‘ 𝐵 ) ∈ On ) ) |
| 6 | ndmfv | ⊢ ( ¬ 𝐵 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐵 ) = ∅ ) | |
| 7 | 0elon | ⊢ ∅ ∈ On | |
| 8 | 6 7 | eqeltrdi | ⊢ ( ¬ 𝐵 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐵 ) ∈ On ) |
| 9 | 8 | a1d | ⊢ ( ¬ 𝐵 ∈ dom 𝐹 → ( Smo 𝐹 → ( 𝐹 ‘ 𝐵 ) ∈ On ) ) |
| 10 | 5 9 | pm2.61i | ⊢ ( Smo 𝐹 → ( 𝐹 ‘ 𝐵 ) ∈ On ) |