This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoord | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smodm2 | |- ( ( F Fn A /\ Smo F ) -> Ord A ) |
|
| 2 | simprl | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> C e. A ) |
|
| 3 | ordelord | |- ( ( Ord A /\ C e. A ) -> Ord C ) |
|
| 4 | 1 2 3 | syl2an2r | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord C ) |
| 5 | simprr | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> D e. A ) |
|
| 6 | ordelord | |- ( ( Ord A /\ D e. A ) -> Ord D ) |
|
| 7 | 1 5 6 | syl2an2r | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord D ) |
| 8 | ordtri3or | |- ( ( Ord C /\ Ord D ) -> ( C e. D \/ C = D \/ D e. C ) ) |
|
| 9 | simp3 | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C e. D ) -> C e. D ) |
|
| 10 | smoel2 | |- ( ( ( F Fn A /\ Smo F ) /\ ( D e. A /\ C e. D ) ) -> ( F ` C ) e. ( F ` D ) ) |
|
| 11 | 10 | expr | |- ( ( ( F Fn A /\ Smo F ) /\ D e. A ) -> ( C e. D -> ( F ` C ) e. ( F ` D ) ) ) |
| 12 | 11 | adantrl | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C e. D -> ( F ` C ) e. ( F ` D ) ) ) |
| 13 | 12 | 3impia | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C e. D ) -> ( F ` C ) e. ( F ` D ) ) |
| 14 | 9 13 | 2thd | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C e. D ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) |
| 15 | 14 | 3expia | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C e. D -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) ) |
| 16 | ordirr | |- ( Ord C -> -. C e. C ) |
|
| 17 | 4 16 | syl | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> -. C e. C ) |
| 18 | 17 | 3adant3 | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> -. C e. C ) |
| 19 | simp3 | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> C = D ) |
|
| 20 | 18 19 | neleqtrd | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> -. C e. D ) |
| 21 | smofvon2 | |- ( Smo F -> ( F ` C ) e. On ) |
|
| 22 | 21 | ad2antlr | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( F ` C ) e. On ) |
| 23 | eloni | |- ( ( F ` C ) e. On -> Ord ( F ` C ) ) |
|
| 24 | ordirr | |- ( Ord ( F ` C ) -> -. ( F ` C ) e. ( F ` C ) ) |
|
| 25 | 22 23 24 | 3syl | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> -. ( F ` C ) e. ( F ` C ) ) |
| 26 | 25 | 3adant3 | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> -. ( F ` C ) e. ( F ` C ) ) |
| 27 | 19 | fveq2d | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> ( F ` C ) = ( F ` D ) ) |
| 28 | 26 27 | neleqtrd | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> -. ( F ` C ) e. ( F ` D ) ) |
| 29 | 20 28 | 2falsed | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) |
| 30 | 29 | 3expia | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C = D -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) ) |
| 31 | 7 | 3adant3 | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> Ord D ) |
| 32 | ordn2lp | |- ( Ord D -> -. ( D e. C /\ C e. D ) ) |
|
| 33 | 31 32 | syl | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> -. ( D e. C /\ C e. D ) ) |
| 34 | pm3.2 | |- ( D e. C -> ( C e. D -> ( D e. C /\ C e. D ) ) ) |
|
| 35 | 34 | 3ad2ant3 | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> ( C e. D -> ( D e. C /\ C e. D ) ) ) |
| 36 | 33 35 | mtod | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> -. C e. D ) |
| 37 | 22 23 | syl | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord ( F ` C ) ) |
| 38 | 37 | 3adant3 | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> Ord ( F ` C ) ) |
| 39 | ordn2lp | |- ( Ord ( F ` C ) -> -. ( ( F ` C ) e. ( F ` D ) /\ ( F ` D ) e. ( F ` C ) ) ) |
|
| 40 | 38 39 | syl | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> -. ( ( F ` C ) e. ( F ` D ) /\ ( F ` D ) e. ( F ` C ) ) ) |
| 41 | smoel2 | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. C ) ) -> ( F ` D ) e. ( F ` C ) ) |
|
| 42 | 41 | adantrlr | |- ( ( ( F Fn A /\ Smo F ) /\ ( ( C e. A /\ D e. A ) /\ D e. C ) ) -> ( F ` D ) e. ( F ` C ) ) |
| 43 | 42 | 3impb | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> ( F ` D ) e. ( F ` C ) ) |
| 44 | pm3.21 | |- ( ( F ` D ) e. ( F ` C ) -> ( ( F ` C ) e. ( F ` D ) -> ( ( F ` C ) e. ( F ` D ) /\ ( F ` D ) e. ( F ` C ) ) ) ) |
|
| 45 | 43 44 | syl | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> ( ( F ` C ) e. ( F ` D ) -> ( ( F ` C ) e. ( F ` D ) /\ ( F ` D ) e. ( F ` C ) ) ) ) |
| 46 | 40 45 | mtod | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> -. ( F ` C ) e. ( F ` D ) ) |
| 47 | 36 46 | 2falsed | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) |
| 48 | 47 | 3expia | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( D e. C -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) ) |
| 49 | 15 30 48 | 3jaod | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( ( C e. D \/ C = D \/ D e. C ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) ) |
| 50 | 8 49 | syl5 | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( ( Ord C /\ Ord D ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) ) |
| 51 | 4 7 50 | mp2and | |- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) |