This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The doubling function D has no right inverse in the monoid of endofunctions on NN0 . (Contributed by AV, 18-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex2dbas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex2dbas.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | ||
| smndex2dbas.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| smndex2dbas.d | ⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) | ||
| Assertion | smndex2dnrinv | ⊢ ∀ 𝑓 ∈ 𝐵 ( 𝐷 ∘ 𝑓 ) ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex2dbas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex2dbas.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 3 | smndex2dbas.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 4 | smndex2dbas.d | ⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) | |
| 5 | df-ne | ⊢ ( ( 𝐷 ∘ 𝑓 ) ≠ 0 ↔ ¬ ( 𝐷 ∘ 𝑓 ) = 0 ) | |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑓 ∈ 𝐵 ( 𝐷 ∘ 𝑓 ) ≠ 0 ↔ ∀ 𝑓 ∈ 𝐵 ¬ ( 𝐷 ∘ 𝑓 ) = 0 ) |
| 7 | 1 2 | efmndbasf | ⊢ ( 𝑓 ∈ 𝐵 → 𝑓 : ℕ0 ⟶ ℕ0 ) |
| 8 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 9 | nn0z | ⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ ) | |
| 10 | 0zd | ⊢ ( 𝑥 ∈ ℕ0 → 0 ∈ ℤ ) | |
| 11 | zneo | ⊢ ( ( 𝑥 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 2 · 𝑥 ) ≠ ( ( 2 · 0 ) + 1 ) ) | |
| 12 | 9 10 11 | syl2anc | ⊢ ( 𝑥 ∈ ℕ0 → ( 2 · 𝑥 ) ≠ ( ( 2 · 0 ) + 1 ) ) |
| 13 | 2t0e0 | ⊢ ( 2 · 0 ) = 0 | |
| 14 | 13 | oveq1i | ⊢ ( ( 2 · 0 ) + 1 ) = ( 0 + 1 ) |
| 15 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 16 | 14 15 | eqtri | ⊢ ( ( 2 · 0 ) + 1 ) = 1 |
| 17 | 16 | a1i | ⊢ ( 𝑥 ∈ ℕ0 → ( ( 2 · 0 ) + 1 ) = 1 ) |
| 18 | 12 17 | neeqtrd | ⊢ ( 𝑥 ∈ ℕ0 → ( 2 · 𝑥 ) ≠ 1 ) |
| 19 | 18 | necomd | ⊢ ( 𝑥 ∈ ℕ0 → 1 ≠ ( 2 · 𝑥 ) ) |
| 20 | 19 | neneqd | ⊢ ( 𝑥 ∈ ℕ0 → ¬ 1 = ( 2 · 𝑥 ) ) |
| 21 | 20 | nrex | ⊢ ¬ ∃ 𝑥 ∈ ℕ0 1 = ( 2 · 𝑥 ) |
| 22 | 1ex | ⊢ 1 ∈ V | |
| 23 | eqeq1 | ⊢ ( 𝑦 = 1 → ( 𝑦 = ( 2 · 𝑥 ) ↔ 1 = ( 2 · 𝑥 ) ) ) | |
| 24 | 23 | rexbidv | ⊢ ( 𝑦 = 1 → ( ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℕ0 1 = ( 2 · 𝑥 ) ) ) |
| 25 | 22 24 | elab | ⊢ ( 1 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ↔ ∃ 𝑥 ∈ ℕ0 1 = ( 2 · 𝑥 ) ) |
| 26 | 21 25 | mtbir | ⊢ ¬ 1 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } |
| 27 | nelss | ⊢ ( ( 1 ∈ ℕ0 ∧ ¬ 1 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ) → ¬ ℕ0 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ) | |
| 28 | 8 26 27 | mp2an | ⊢ ¬ ℕ0 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } |
| 29 | 28 | intnan | ⊢ ¬ ( { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ⊆ ℕ0 ∧ ℕ0 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ) |
| 30 | eqss | ⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } = ℕ0 ↔ ( { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ⊆ ℕ0 ∧ ℕ0 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ) ) | |
| 31 | 29 30 | mtbir | ⊢ ¬ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } = ℕ0 |
| 32 | 4 | rnmpt | ⊢ ran 𝐷 = { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } |
| 33 | 32 | eqeq1i | ⊢ ( ran 𝐷 = ℕ0 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } = ℕ0 ) |
| 34 | 31 33 | mtbir | ⊢ ¬ ran 𝐷 = ℕ0 |
| 35 | 34 | olci | ⊢ ( ¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0 ) |
| 36 | ianor | ⊢ ( ¬ ( 𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0 ) ↔ ( ¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0 ) ) | |
| 37 | df-fo | ⊢ ( 𝐷 : ℕ0 –onto→ ℕ0 ↔ ( 𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0 ) ) | |
| 38 | 36 37 | xchnxbir | ⊢ ( ¬ 𝐷 : ℕ0 –onto→ ℕ0 ↔ ( ¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0 ) ) |
| 39 | 35 38 | mpbir | ⊢ ¬ 𝐷 : ℕ0 –onto→ ℕ0 |
| 40 | 39 | a1i | ⊢ ( 𝑓 : ℕ0 ⟶ ℕ0 → ¬ 𝐷 : ℕ0 –onto→ ℕ0 ) |
| 41 | 1 2 3 4 | smndex2dbas | ⊢ 𝐷 ∈ 𝐵 |
| 42 | 1 2 | efmndbasf | ⊢ ( 𝐷 ∈ 𝐵 → 𝐷 : ℕ0 ⟶ ℕ0 ) |
| 43 | simpl | ⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0 ∧ ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) ) → 𝐷 : ℕ0 ⟶ ℕ0 ) | |
| 44 | simpl | ⊢ ( ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) → 𝑓 : ℕ0 ⟶ ℕ0 ) | |
| 45 | 44 | adantl | ⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0 ∧ ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) ) → 𝑓 : ℕ0 ⟶ ℕ0 ) |
| 46 | nn0ex | ⊢ ℕ0 ∈ V | |
| 47 | 1 | efmndid | ⊢ ( ℕ0 ∈ V → ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) ) |
| 48 | 46 47 | ax-mp | ⊢ ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) |
| 49 | 3 48 | eqtr4i | ⊢ 0 = ( I ↾ ℕ0 ) |
| 50 | 49 | eqeq2i | ⊢ ( ( 𝐷 ∘ 𝑓 ) = 0 ↔ ( 𝐷 ∘ 𝑓 ) = ( I ↾ ℕ0 ) ) |
| 51 | 50 | biimpi | ⊢ ( ( 𝐷 ∘ 𝑓 ) = 0 → ( 𝐷 ∘ 𝑓 ) = ( I ↾ ℕ0 ) ) |
| 52 | 51 | adantl | ⊢ ( ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) → ( 𝐷 ∘ 𝑓 ) = ( I ↾ ℕ0 ) ) |
| 53 | 52 | adantl | ⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0 ∧ ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) ) → ( 𝐷 ∘ 𝑓 ) = ( I ↾ ℕ0 ) ) |
| 54 | fcofo | ⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0 ∧ 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = ( I ↾ ℕ0 ) ) → 𝐷 : ℕ0 –onto→ ℕ0 ) | |
| 55 | 43 45 53 54 | syl3anc | ⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0 ∧ ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) ) → 𝐷 : ℕ0 –onto→ ℕ0 ) |
| 56 | 55 | ex | ⊢ ( 𝐷 : ℕ0 ⟶ ℕ0 → ( ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) → 𝐷 : ℕ0 –onto→ ℕ0 ) ) |
| 57 | 41 42 56 | mp2b | ⊢ ( ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) → 𝐷 : ℕ0 –onto→ ℕ0 ) |
| 58 | 40 57 | mtand | ⊢ ( 𝑓 : ℕ0 ⟶ ℕ0 → ¬ ( 𝐷 ∘ 𝑓 ) = 0 ) |
| 59 | 7 58 | syl | ⊢ ( 𝑓 ∈ 𝐵 → ¬ ( 𝐷 ∘ 𝑓 ) = 0 ) |
| 60 | 6 59 | mprgbir | ⊢ ∀ 𝑓 ∈ 𝐵 ( 𝐷 ∘ 𝑓 ) ≠ 0 |