This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of Apostol p. 28. (Contributed by NM, 31-Jul-2004) (Proof shortened by Mario Carneiro, 18-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zneo | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 · 𝐴 ) ≠ ( ( 2 · 𝐵 ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfnz | ⊢ ¬ ( 1 / 2 ) ∈ ℤ | |
| 2 | 2cn | ⊢ 2 ∈ ℂ | |
| 3 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 5 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 2 · 𝐴 ) ∈ ℂ ) | |
| 6 | 2 4 5 | sylancr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 · 𝐴 ) ∈ ℂ ) |
| 7 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 9 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · 𝐵 ) ∈ ℂ ) | |
| 10 | 2 8 9 | sylancr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 · 𝐵 ) ∈ ℂ ) |
| 11 | 1cnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 1 ∈ ℂ ) | |
| 12 | 6 10 11 | subaddd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 2 · 𝐴 ) − ( 2 · 𝐵 ) ) = 1 ↔ ( ( 2 · 𝐵 ) + 1 ) = ( 2 · 𝐴 ) ) ) |
| 13 | 2 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 2 ∈ ℂ ) |
| 14 | 13 4 8 | subdid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 · ( 𝐴 − 𝐵 ) ) = ( ( 2 · 𝐴 ) − ( 2 · 𝐵 ) ) ) |
| 15 | 14 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 2 · ( 𝐴 − 𝐵 ) ) / 2 ) = ( ( ( 2 · 𝐴 ) − ( 2 · 𝐵 ) ) / 2 ) ) |
| 16 | zsubcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) | |
| 17 | zcn | ⊢ ( ( 𝐴 − 𝐵 ) ∈ ℤ → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 19 | 2ne0 | ⊢ 2 ≠ 0 | |
| 20 | 19 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 2 ≠ 0 ) |
| 21 | 18 13 20 | divcan3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 2 · ( 𝐴 − 𝐵 ) ) / 2 ) = ( 𝐴 − 𝐵 ) ) |
| 22 | 15 21 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 2 · 𝐴 ) − ( 2 · 𝐵 ) ) / 2 ) = ( 𝐴 − 𝐵 ) ) |
| 23 | 22 16 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 2 · 𝐴 ) − ( 2 · 𝐵 ) ) / 2 ) ∈ ℤ ) |
| 24 | oveq1 | ⊢ ( ( ( 2 · 𝐴 ) − ( 2 · 𝐵 ) ) = 1 → ( ( ( 2 · 𝐴 ) − ( 2 · 𝐵 ) ) / 2 ) = ( 1 / 2 ) ) | |
| 25 | 24 | eleq1d | ⊢ ( ( ( 2 · 𝐴 ) − ( 2 · 𝐵 ) ) = 1 → ( ( ( ( 2 · 𝐴 ) − ( 2 · 𝐵 ) ) / 2 ) ∈ ℤ ↔ ( 1 / 2 ) ∈ ℤ ) ) |
| 26 | 23 25 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 2 · 𝐴 ) − ( 2 · 𝐵 ) ) = 1 → ( 1 / 2 ) ∈ ℤ ) ) |
| 27 | 12 26 | sylbird | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 2 · 𝐵 ) + 1 ) = ( 2 · 𝐴 ) → ( 1 / 2 ) ∈ ℤ ) ) |
| 28 | 27 | necon3bd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ¬ ( 1 / 2 ) ∈ ℤ → ( ( 2 · 𝐵 ) + 1 ) ≠ ( 2 · 𝐴 ) ) ) |
| 29 | 1 28 | mpi | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 2 · 𝐵 ) + 1 ) ≠ ( 2 · 𝐴 ) ) |
| 30 | 29 | necomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 · 𝐴 ) ≠ ( ( 2 · 𝐵 ) + 1 ) ) |