This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The doubling function D has no right inverse in the monoid of endofunctions on NN0 . (Contributed by AV, 18-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex2dbas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex2dbas.b | |- B = ( Base ` M ) |
||
| smndex2dbas.0 | |- .0. = ( 0g ` M ) |
||
| smndex2dbas.d | |- D = ( x e. NN0 |-> ( 2 x. x ) ) |
||
| Assertion | smndex2dnrinv | |- A. f e. B ( D o. f ) =/= .0. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex2dbas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex2dbas.b | |- B = ( Base ` M ) |
|
| 3 | smndex2dbas.0 | |- .0. = ( 0g ` M ) |
|
| 4 | smndex2dbas.d | |- D = ( x e. NN0 |-> ( 2 x. x ) ) |
|
| 5 | df-ne | |- ( ( D o. f ) =/= .0. <-> -. ( D o. f ) = .0. ) |
|
| 6 | 5 | ralbii | |- ( A. f e. B ( D o. f ) =/= .0. <-> A. f e. B -. ( D o. f ) = .0. ) |
| 7 | 1 2 | efmndbasf | |- ( f e. B -> f : NN0 --> NN0 ) |
| 8 | 1nn0 | |- 1 e. NN0 |
|
| 9 | nn0z | |- ( x e. NN0 -> x e. ZZ ) |
|
| 10 | 0zd | |- ( x e. NN0 -> 0 e. ZZ ) |
|
| 11 | zneo | |- ( ( x e. ZZ /\ 0 e. ZZ ) -> ( 2 x. x ) =/= ( ( 2 x. 0 ) + 1 ) ) |
|
| 12 | 9 10 11 | syl2anc | |- ( x e. NN0 -> ( 2 x. x ) =/= ( ( 2 x. 0 ) + 1 ) ) |
| 13 | 2t0e0 | |- ( 2 x. 0 ) = 0 |
|
| 14 | 13 | oveq1i | |- ( ( 2 x. 0 ) + 1 ) = ( 0 + 1 ) |
| 15 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 16 | 14 15 | eqtri | |- ( ( 2 x. 0 ) + 1 ) = 1 |
| 17 | 16 | a1i | |- ( x e. NN0 -> ( ( 2 x. 0 ) + 1 ) = 1 ) |
| 18 | 12 17 | neeqtrd | |- ( x e. NN0 -> ( 2 x. x ) =/= 1 ) |
| 19 | 18 | necomd | |- ( x e. NN0 -> 1 =/= ( 2 x. x ) ) |
| 20 | 19 | neneqd | |- ( x e. NN0 -> -. 1 = ( 2 x. x ) ) |
| 21 | 20 | nrex | |- -. E. x e. NN0 1 = ( 2 x. x ) |
| 22 | 1ex | |- 1 e. _V |
|
| 23 | eqeq1 | |- ( y = 1 -> ( y = ( 2 x. x ) <-> 1 = ( 2 x. x ) ) ) |
|
| 24 | 23 | rexbidv | |- ( y = 1 -> ( E. x e. NN0 y = ( 2 x. x ) <-> E. x e. NN0 1 = ( 2 x. x ) ) ) |
| 25 | 22 24 | elab | |- ( 1 e. { y | E. x e. NN0 y = ( 2 x. x ) } <-> E. x e. NN0 1 = ( 2 x. x ) ) |
| 26 | 21 25 | mtbir | |- -. 1 e. { y | E. x e. NN0 y = ( 2 x. x ) } |
| 27 | nelss | |- ( ( 1 e. NN0 /\ -. 1 e. { y | E. x e. NN0 y = ( 2 x. x ) } ) -> -. NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } ) |
|
| 28 | 8 26 27 | mp2an | |- -. NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } |
| 29 | 28 | intnan | |- -. ( { y | E. x e. NN0 y = ( 2 x. x ) } C_ NN0 /\ NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } ) |
| 30 | eqss | |- ( { y | E. x e. NN0 y = ( 2 x. x ) } = NN0 <-> ( { y | E. x e. NN0 y = ( 2 x. x ) } C_ NN0 /\ NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } ) ) |
|
| 31 | 29 30 | mtbir | |- -. { y | E. x e. NN0 y = ( 2 x. x ) } = NN0 |
| 32 | 4 | rnmpt | |- ran D = { y | E. x e. NN0 y = ( 2 x. x ) } |
| 33 | 32 | eqeq1i | |- ( ran D = NN0 <-> { y | E. x e. NN0 y = ( 2 x. x ) } = NN0 ) |
| 34 | 31 33 | mtbir | |- -. ran D = NN0 |
| 35 | 34 | olci | |- ( -. D Fn NN0 \/ -. ran D = NN0 ) |
| 36 | ianor | |- ( -. ( D Fn NN0 /\ ran D = NN0 ) <-> ( -. D Fn NN0 \/ -. ran D = NN0 ) ) |
|
| 37 | df-fo | |- ( D : NN0 -onto-> NN0 <-> ( D Fn NN0 /\ ran D = NN0 ) ) |
|
| 38 | 36 37 | xchnxbir | |- ( -. D : NN0 -onto-> NN0 <-> ( -. D Fn NN0 \/ -. ran D = NN0 ) ) |
| 39 | 35 38 | mpbir | |- -. D : NN0 -onto-> NN0 |
| 40 | 39 | a1i | |- ( f : NN0 --> NN0 -> -. D : NN0 -onto-> NN0 ) |
| 41 | 1 2 3 4 | smndex2dbas | |- D e. B |
| 42 | 1 2 | efmndbasf | |- ( D e. B -> D : NN0 --> NN0 ) |
| 43 | simpl | |- ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> D : NN0 --> NN0 ) |
|
| 44 | simpl | |- ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> f : NN0 --> NN0 ) |
|
| 45 | 44 | adantl | |- ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> f : NN0 --> NN0 ) |
| 46 | nn0ex | |- NN0 e. _V |
|
| 47 | 1 | efmndid | |- ( NN0 e. _V -> ( _I |` NN0 ) = ( 0g ` M ) ) |
| 48 | 46 47 | ax-mp | |- ( _I |` NN0 ) = ( 0g ` M ) |
| 49 | 3 48 | eqtr4i | |- .0. = ( _I |` NN0 ) |
| 50 | 49 | eqeq2i | |- ( ( D o. f ) = .0. <-> ( D o. f ) = ( _I |` NN0 ) ) |
| 51 | 50 | biimpi | |- ( ( D o. f ) = .0. -> ( D o. f ) = ( _I |` NN0 ) ) |
| 52 | 51 | adantl | |- ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> ( D o. f ) = ( _I |` NN0 ) ) |
| 53 | 52 | adantl | |- ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> ( D o. f ) = ( _I |` NN0 ) ) |
| 54 | fcofo | |- ( ( D : NN0 --> NN0 /\ f : NN0 --> NN0 /\ ( D o. f ) = ( _I |` NN0 ) ) -> D : NN0 -onto-> NN0 ) |
|
| 55 | 43 45 53 54 | syl3anc | |- ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> D : NN0 -onto-> NN0 ) |
| 56 | 55 | ex | |- ( D : NN0 --> NN0 -> ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> D : NN0 -onto-> NN0 ) ) |
| 57 | 41 42 56 | mp2b | |- ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> D : NN0 -onto-> NN0 ) |
| 58 | 40 57 | mtand | |- ( f : NN0 --> NN0 -> -. ( D o. f ) = .0. ) |
| 59 | 7 58 | syl | |- ( f e. B -> -. ( D o. f ) = .0. ) |
| 60 | 6 59 | mprgbir | |- A. f e. B ( D o. f ) =/= .0. |