This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An application is surjective if a section exists. Proposition 8 of BourbakiEns p. E.II.18. (Contributed by FL, 17-Nov-2011) (Proof shortened by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcofo | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | ffvelcdm | ⊢ ( ( 𝑆 : 𝐵 ⟶ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑆 ‘ 𝑦 ) ∈ 𝐴 ) | |
| 3 | 2 | 3ad2antl2 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑆 ‘ 𝑦 ) ∈ 𝐴 ) |
| 4 | simpl3 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) | |
| 5 | 4 | fveq1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑆 ) ‘ 𝑦 ) = ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) |
| 6 | fvco3 | ⊢ ( ( 𝑆 : 𝐵 ⟶ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑆 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) | |
| 7 | 6 | 3ad2antl2 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑆 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 8 | fvresi | ⊢ ( 𝑦 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
| 10 | 5 7 9 | 3eqtr3rd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 = ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑥 = ( 𝑆 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) | |
| 12 | 11 | rspceeqv | ⊢ ( ( ( 𝑆 ‘ 𝑦 ) ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ ( 𝑆 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 13 | 3 10 12 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 14 | 13 | ralrimiva | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 15 | dffo3 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) | |
| 16 | 1 14 15 | sylanbrc | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑆 : 𝐵 ⟶ 𝐴 ∧ ( 𝐹 ∘ 𝑆 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |