This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The halving functions H are endofunctions on NN0 . (Contributed by AV, 18-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex2dbas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex2dbas.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | ||
| smndex2dbas.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| smndex2dbas.d | ⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) | ||
| smndex2hbas.n | ⊢ 𝑁 ∈ ℕ0 | ||
| smndex2hbas.h | ⊢ 𝐻 = ( 𝑥 ∈ ℕ0 ↦ if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ) | ||
| Assertion | smndex2hbas | ⊢ 𝐻 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex2dbas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex2dbas.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 3 | smndex2dbas.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 4 | smndex2dbas.d | ⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) | |
| 5 | smndex2hbas.n | ⊢ 𝑁 ∈ ℕ0 | |
| 6 | smndex2hbas.h | ⊢ 𝐻 = ( 𝑥 ∈ ℕ0 ↦ if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ) | |
| 7 | nn0ehalf | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ 2 ∥ 𝑥 ) → ( 𝑥 / 2 ) ∈ ℕ0 ) | |
| 8 | 5 | a1i | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑥 ) → 𝑁 ∈ ℕ0 ) |
| 9 | 7 8 | ifclda | ⊢ ( 𝑥 ∈ ℕ0 → if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ∈ ℕ0 ) |
| 10 | 6 9 | fmpti | ⊢ 𝐻 : ℕ0 ⟶ ℕ0 |
| 11 | nn0ex | ⊢ ℕ0 ∈ V | |
| 12 | 11 | mptex | ⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ) ∈ V |
| 13 | 6 12 | eqeltri | ⊢ 𝐻 ∈ V |
| 14 | 1 2 | elefmndbas2 | ⊢ ( 𝐻 ∈ V → ( 𝐻 ∈ 𝐵 ↔ 𝐻 : ℕ0 ⟶ ℕ0 ) ) |
| 15 | 13 14 | ax-mp | ⊢ ( 𝐻 ∈ 𝐵 ↔ 𝐻 : ℕ0 ⟶ ℕ0 ) |
| 16 | 10 15 | mpbir | ⊢ 𝐻 ∈ 𝐵 |