This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The doubling function D is an endofunction on NN0 . (Contributed by AV, 18-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex2dbas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex2dbas.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | ||
| smndex2dbas.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| smndex2dbas.d | ⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) | ||
| Assertion | smndex2dbas | ⊢ 𝐷 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex2dbas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex2dbas.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 3 | smndex2dbas.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 4 | smndex2dbas.d | ⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) | |
| 5 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 6 | 5 | a1i | ⊢ ( 𝑥 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 7 | id | ⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℕ0 ) | |
| 8 | 6 7 | nn0mulcld | ⊢ ( 𝑥 ∈ ℕ0 → ( 2 · 𝑥 ) ∈ ℕ0 ) |
| 9 | 4 8 | fmpti | ⊢ 𝐷 : ℕ0 ⟶ ℕ0 |
| 10 | nn0ex | ⊢ ℕ0 ∈ V | |
| 11 | 10 | mptex | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) ∈ V |
| 12 | 4 11 | eqeltri | ⊢ 𝐷 ∈ V |
| 13 | 1 2 | elefmndbas2 | ⊢ ( 𝐷 ∈ V → ( 𝐷 ∈ 𝐵 ↔ 𝐷 : ℕ0 ⟶ ℕ0 ) ) |
| 14 | 12 13 | ax-mp | ⊢ ( 𝐷 ∈ 𝐵 ↔ 𝐷 : ℕ0 ⟶ ℕ0 ) |
| 15 | 9 14 | mpbir | ⊢ 𝐷 ∈ 𝐵 |