This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of both sides of 'less than or equal to'. (Contributed by NM, 29-Sep-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lesub2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐶 − 𝐵 ) ≤ ( 𝐶 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐶 + 𝐴 ) ≤ ( 𝐶 + 𝐵 ) ) ) | |
| 2 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) | |
| 3 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 4 | 2 3 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 + 𝐴 ) ∈ ℝ ) |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 6 | lesubadd | ⊢ ( ( ( 𝐶 + 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐶 + 𝐴 ) − 𝐵 ) ≤ 𝐶 ↔ ( 𝐶 + 𝐴 ) ≤ ( 𝐶 + 𝐵 ) ) ) | |
| 7 | 4 5 2 6 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐶 + 𝐴 ) − 𝐵 ) ≤ 𝐶 ↔ ( 𝐶 + 𝐴 ) ≤ ( 𝐶 + 𝐵 ) ) ) |
| 8 | 2 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
| 9 | 3 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 10 | 5 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 11 | 8 9 10 | addsubd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 + 𝐴 ) − 𝐵 ) = ( ( 𝐶 − 𝐵 ) + 𝐴 ) ) |
| 12 | 11 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐶 + 𝐴 ) − 𝐵 ) ≤ 𝐶 ↔ ( ( 𝐶 − 𝐵 ) + 𝐴 ) ≤ 𝐶 ) ) |
| 13 | 1 7 12 | 3bitr2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( ( 𝐶 − 𝐵 ) + 𝐴 ) ≤ 𝐶 ) ) |
| 14 | 2 5 | resubcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 15 | leaddsub | ⊢ ( ( ( 𝐶 − 𝐵 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐶 − 𝐵 ) + 𝐴 ) ≤ 𝐶 ↔ ( 𝐶 − 𝐵 ) ≤ ( 𝐶 − 𝐴 ) ) ) | |
| 16 | 14 3 2 15 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐶 − 𝐵 ) + 𝐴 ) ≤ 𝐶 ↔ ( 𝐶 − 𝐵 ) ≤ ( 𝐶 − 𝐴 ) ) ) |
| 17 | 13 16 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐶 − 𝐵 ) ≤ ( 𝐶 − 𝐴 ) ) ) |