This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axmulgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → 0 < ( 𝐴 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-mulgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 ) → 0 <ℝ ( 𝐴 · 𝐵 ) ) ) | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | ltxrlt | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ 0 <ℝ 𝐴 ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ 0 <ℝ 𝐴 ) ) |
| 5 | ltxrlt | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 ↔ 0 <ℝ 𝐵 ) ) | |
| 6 | 2 5 | mpan | ⊢ ( 𝐵 ∈ ℝ → ( 0 < 𝐵 ↔ 0 <ℝ 𝐵 ) ) |
| 7 | 4 6 | bi2anan9 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) ↔ ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 ) ) ) |
| 8 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) | |
| 9 | ltxrlt | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 · 𝐵 ) ∈ ℝ ) → ( 0 < ( 𝐴 · 𝐵 ) ↔ 0 <ℝ ( 𝐴 · 𝐵 ) ) ) | |
| 10 | 2 8 9 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < ( 𝐴 · 𝐵 ) ↔ 0 <ℝ ( 𝐴 · 𝐵 ) ) ) |
| 11 | 1 7 10 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → 0 < ( 𝐴 · 𝐵 ) ) ) |