This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shuni.1 | |- ( ph -> H e. SH ) |
|
| shuni.2 | |- ( ph -> K e. SH ) |
||
| shuni.3 | |- ( ph -> ( H i^i K ) = 0H ) |
||
| shuni.4 | |- ( ph -> A e. H ) |
||
| shuni.5 | |- ( ph -> B e. K ) |
||
| shuni.6 | |- ( ph -> C e. H ) |
||
| shuni.7 | |- ( ph -> D e. K ) |
||
| shuni.8 | |- ( ph -> ( A +h B ) = ( C +h D ) ) |
||
| Assertion | shuni | |- ( ph -> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shuni.1 | |- ( ph -> H e. SH ) |
|
| 2 | shuni.2 | |- ( ph -> K e. SH ) |
|
| 3 | shuni.3 | |- ( ph -> ( H i^i K ) = 0H ) |
|
| 4 | shuni.4 | |- ( ph -> A e. H ) |
|
| 5 | shuni.5 | |- ( ph -> B e. K ) |
|
| 6 | shuni.6 | |- ( ph -> C e. H ) |
|
| 7 | shuni.7 | |- ( ph -> D e. K ) |
|
| 8 | shuni.8 | |- ( ph -> ( A +h B ) = ( C +h D ) ) |
|
| 9 | shsubcl | |- ( ( H e. SH /\ A e. H /\ C e. H ) -> ( A -h C ) e. H ) |
|
| 10 | 1 4 6 9 | syl3anc | |- ( ph -> ( A -h C ) e. H ) |
| 11 | shel | |- ( ( H e. SH /\ A e. H ) -> A e. ~H ) |
|
| 12 | 1 4 11 | syl2anc | |- ( ph -> A e. ~H ) |
| 13 | shel | |- ( ( K e. SH /\ B e. K ) -> B e. ~H ) |
|
| 14 | 2 5 13 | syl2anc | |- ( ph -> B e. ~H ) |
| 15 | shel | |- ( ( H e. SH /\ C e. H ) -> C e. ~H ) |
|
| 16 | 1 6 15 | syl2anc | |- ( ph -> C e. ~H ) |
| 17 | shel | |- ( ( K e. SH /\ D e. K ) -> D e. ~H ) |
|
| 18 | 2 7 17 | syl2anc | |- ( ph -> D e. ~H ) |
| 19 | hvaddsub4 | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) = ( C +h D ) <-> ( A -h C ) = ( D -h B ) ) ) |
|
| 20 | 12 14 16 18 19 | syl22anc | |- ( ph -> ( ( A +h B ) = ( C +h D ) <-> ( A -h C ) = ( D -h B ) ) ) |
| 21 | 8 20 | mpbid | |- ( ph -> ( A -h C ) = ( D -h B ) ) |
| 22 | shsubcl | |- ( ( K e. SH /\ D e. K /\ B e. K ) -> ( D -h B ) e. K ) |
|
| 23 | 2 7 5 22 | syl3anc | |- ( ph -> ( D -h B ) e. K ) |
| 24 | 21 23 | eqeltrd | |- ( ph -> ( A -h C ) e. K ) |
| 25 | 10 24 | elind | |- ( ph -> ( A -h C ) e. ( H i^i K ) ) |
| 26 | 25 3 | eleqtrd | |- ( ph -> ( A -h C ) e. 0H ) |
| 27 | elch0 | |- ( ( A -h C ) e. 0H <-> ( A -h C ) = 0h ) |
|
| 28 | 26 27 | sylib | |- ( ph -> ( A -h C ) = 0h ) |
| 29 | hvsubeq0 | |- ( ( A e. ~H /\ C e. ~H ) -> ( ( A -h C ) = 0h <-> A = C ) ) |
|
| 30 | 12 16 29 | syl2anc | |- ( ph -> ( ( A -h C ) = 0h <-> A = C ) ) |
| 31 | 28 30 | mpbid | |- ( ph -> A = C ) |
| 32 | 21 28 | eqtr3d | |- ( ph -> ( D -h B ) = 0h ) |
| 33 | hvsubeq0 | |- ( ( D e. ~H /\ B e. ~H ) -> ( ( D -h B ) = 0h <-> D = B ) ) |
|
| 34 | 18 14 33 | syl2anc | |- ( ph -> ( ( D -h B ) = 0h <-> D = B ) ) |
| 35 | 32 34 | mpbid | |- ( ph -> D = B ) |
| 36 | 35 | eqcomd | |- ( ph -> B = D ) |
| 37 | 31 36 | jca | |- ( ph -> ( A = C /\ B = D ) ) |