This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 18-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvaddsub4 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ↔ ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) | |
| 2 | 1 | adantr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) |
| 3 | hvaddcl | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐶 +ℎ 𝐷 ) ∈ ℋ ) | |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐶 +ℎ 𝐷 ) ∈ ℋ ) |
| 5 | hvaddcl | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 +ℎ 𝐵 ) ∈ ℋ ) | |
| 6 | 5 | ancoms | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐶 +ℎ 𝐵 ) ∈ ℋ ) |
| 7 | 6 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐶 +ℎ 𝐵 ) ∈ ℋ ) |
| 8 | hvsubcan2 | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ∧ ( 𝐶 +ℎ 𝐷 ) ∈ ℋ ∧ ( 𝐶 +ℎ 𝐵 ) ∈ ℋ ) → ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( ( 𝐶 +ℎ 𝐷 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) ↔ ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ) ) | |
| 9 | 2 4 7 8 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( ( 𝐶 +ℎ 𝐷 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) ↔ ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ) ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → 𝐵 ∈ ℋ ) | |
| 11 | 10 | anim2i | ⊢ ( ( 𝐶 ∈ ℋ ∧ ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) → ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) |
| 12 | 11 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) |
| 13 | hvsub4 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐵 −ℎ 𝐵 ) ) ) | |
| 14 | 12 13 | syldan | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐵 −ℎ 𝐵 ) ) ) |
| 15 | hvsubid | ⊢ ( 𝐵 ∈ ℋ → ( 𝐵 −ℎ 𝐵 ) = 0ℎ ) | |
| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( 𝐵 −ℎ 𝐵 ) = 0ℎ ) |
| 17 | 16 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐵 −ℎ 𝐵 ) ) = ( ( 𝐴 −ℎ 𝐶 ) +ℎ 0ℎ ) ) |
| 18 | hvsubcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐶 ) ∈ ℋ ) | |
| 19 | ax-hvaddid | ⊢ ( ( 𝐴 −ℎ 𝐶 ) ∈ ℋ → ( ( 𝐴 −ℎ 𝐶 ) +ℎ 0ℎ ) = ( 𝐴 −ℎ 𝐶 ) ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) +ℎ 0ℎ ) = ( 𝐴 −ℎ 𝐶 ) ) |
| 21 | 20 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) +ℎ 0ℎ ) = ( 𝐴 −ℎ 𝐶 ) ) |
| 22 | 14 17 21 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( 𝐴 −ℎ 𝐶 ) ) |
| 23 | 22 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( 𝐴 −ℎ 𝐶 ) ) |
| 24 | simpl | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → 𝐶 ∈ ℋ ) | |
| 25 | 24 | anim1i | ⊢ ( ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ∧ 𝐵 ∈ ℋ ) → ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) |
| 26 | hvsub4 | ⊢ ( ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) → ( ( 𝐶 +ℎ 𝐷 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( ( 𝐶 −ℎ 𝐶 ) +ℎ ( 𝐷 −ℎ 𝐵 ) ) ) | |
| 27 | 25 26 | syldan | ⊢ ( ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ∧ 𝐵 ∈ ℋ ) → ( ( 𝐶 +ℎ 𝐷 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( ( 𝐶 −ℎ 𝐶 ) +ℎ ( 𝐷 −ℎ 𝐵 ) ) ) |
| 28 | hvsubid | ⊢ ( 𝐶 ∈ ℋ → ( 𝐶 −ℎ 𝐶 ) = 0ℎ ) | |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ∧ 𝐵 ∈ ℋ ) → ( 𝐶 −ℎ 𝐶 ) = 0ℎ ) |
| 30 | 29 | oveq1d | ⊢ ( ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ∧ 𝐵 ∈ ℋ ) → ( ( 𝐶 −ℎ 𝐶 ) +ℎ ( 𝐷 −ℎ 𝐵 ) ) = ( 0ℎ +ℎ ( 𝐷 −ℎ 𝐵 ) ) ) |
| 31 | hvsubcl | ⊢ ( ( 𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐷 −ℎ 𝐵 ) ∈ ℋ ) | |
| 32 | hvaddlid | ⊢ ( ( 𝐷 −ℎ 𝐵 ) ∈ ℋ → ( 0ℎ +ℎ ( 𝐷 −ℎ 𝐵 ) ) = ( 𝐷 −ℎ 𝐵 ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 0ℎ +ℎ ( 𝐷 −ℎ 𝐵 ) ) = ( 𝐷 −ℎ 𝐵 ) ) |
| 34 | 33 | adantll | ⊢ ( ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ∧ 𝐵 ∈ ℋ ) → ( 0ℎ +ℎ ( 𝐷 −ℎ 𝐵 ) ) = ( 𝐷 −ℎ 𝐵 ) ) |
| 35 | 27 30 34 | 3eqtrd | ⊢ ( ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ∧ 𝐵 ∈ ℋ ) → ( ( 𝐶 +ℎ 𝐷 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( 𝐷 −ℎ 𝐵 ) ) |
| 36 | 35 | ancoms | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐶 +ℎ 𝐷 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( 𝐷 −ℎ 𝐵 ) ) |
| 37 | 36 | adantll | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐶 +ℎ 𝐷 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( 𝐷 −ℎ 𝐵 ) ) |
| 38 | 23 37 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) = ( ( 𝐶 +ℎ 𝐷 ) −ℎ ( 𝐶 +ℎ 𝐵 ) ) ↔ ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) ) |
| 39 | 9 38 | bitr3d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ↔ ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) ) |