This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shuni.1 | ||
| shuni.2 | |||
| shuni.3 | |||
| shuni.4 | |||
| shuni.5 | |||
| shuni.6 | |||
| shuni.7 | |||
| shuni.8 | |||
| Assertion | shuni |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shuni.1 | ||
| 2 | shuni.2 | ||
| 3 | shuni.3 | ||
| 4 | shuni.4 | ||
| 5 | shuni.5 | ||
| 6 | shuni.6 | ||
| 7 | shuni.7 | ||
| 8 | shuni.8 | ||
| 9 | shsubcl | ||
| 10 | 1 4 6 9 | syl3anc | |
| 11 | shel | ||
| 12 | 1 4 11 | syl2anc | |
| 13 | shel | ||
| 14 | 2 5 13 | syl2anc | |
| 15 | shel | ||
| 16 | 1 6 15 | syl2anc | |
| 17 | shel | ||
| 18 | 2 7 17 | syl2anc | |
| 19 | hvaddsub4 | ||
| 20 | 12 14 16 18 19 | syl22anc | |
| 21 | 8 20 | mpbid | |
| 22 | shsubcl | ||
| 23 | 2 7 5 22 | syl3anc | |
| 24 | 21 23 | eqeltrd | |
| 25 | 10 24 | elind | |
| 26 | 25 3 | eleqtrd | |
| 27 | elch0 | ||
| 28 | 26 27 | sylib | |
| 29 | hvsubeq0 | ||
| 30 | 12 16 29 | syl2anc | |
| 31 | 28 30 | mpbid | |
| 32 | 21 28 | eqtr3d | |
| 33 | hvsubeq0 | ||
| 34 | 18 14 33 | syl2anc | |
| 35 | 32 34 | mpbid | |
| 36 | 35 | eqcomd | |
| 37 | 31 36 | jca |