This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniqueness part of Projection Theorem. Theorem 3.7(i) of Beran p. 102 (uniqueness part). (Contributed by NM, 23-Oct-1999) (Proof shortened by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | chocuni.1 | ⊢ 𝐻 ∈ Cℋ | |
| Assertion | chocunii | ⊢ ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chocuni.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | chshii | ⊢ 𝐻 ∈ Sℋ |
| 3 | 2 | a1i | ⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → 𝐻 ∈ Sℋ ) |
| 4 | shocsh | ⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) | |
| 5 | 2 4 | mp1i | ⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
| 6 | ocin | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) | |
| 7 | 2 6 | mp1i | ⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) |
| 8 | simplll | ⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → 𝐴 ∈ 𝐻 ) | |
| 9 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) | |
| 10 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → 𝐶 ∈ 𝐻 ) | |
| 11 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) | |
| 12 | eqtr2 | ⊢ ( ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ) | |
| 13 | 12 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ) |
| 14 | 3 5 7 8 9 10 11 13 | shuni | ⊢ ( ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) ∧ ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 15 | 14 | ex | ⊢ ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝑅 = ( 𝐴 +ℎ 𝐵 ) ∧ 𝑅 = ( 𝐶 +ℎ 𝐷 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |