This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsel3 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shsel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) ) | |
| 2 | id | ⊢ ( 𝐶 = ( 𝑥 +ℎ 𝑧 ) → 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) | |
| 3 | shel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℋ ) | |
| 4 | shel | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ℋ ) | |
| 5 | hvaddsubval | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 7 | 6 | an4s | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 8 | 7 | anassrs | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 9 | 2 8 | sylan9eqr | ⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) → 𝐶 = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) |
| 10 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 11 | shmulcl | ⊢ ( ( 𝐵 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) | |
| 12 | 10 11 | mp3an2 | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
| 13 | 12 | adantll | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
| 14 | 13 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ) |
| 15 | oveq2 | ⊢ ( 𝑦 = ( - 1 ·ℎ 𝑧 ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) | |
| 16 | 15 | rspceeqv | ⊢ ( ( ( - 1 ·ℎ 𝑧 ) ∈ 𝐵 ∧ 𝐶 = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) |
| 17 | 14 16 | sylan | ⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 −ℎ ( - 1 ·ℎ 𝑧 ) ) ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) |
| 18 | 9 17 | syldan | ⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) |
| 19 | 18 | rexlimdva2 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) → ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |
| 20 | id | ⊢ ( 𝐶 = ( 𝑥 −ℎ 𝑦 ) → 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) | |
| 21 | shel | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℋ ) | |
| 22 | hvsubval | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) | |
| 23 | 3 21 22 | syl2an | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ Sℋ ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 24 | 23 | an4s | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 25 | 24 | anassrs | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 26 | 20 25 | sylan9eqr | ⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) → 𝐶 = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
| 27 | shmulcl | ⊢ ( ( 𝐵 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) | |
| 28 | 10 27 | mp3an2 | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) |
| 29 | 28 | adantll | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) |
| 30 | 29 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ) |
| 31 | oveq2 | ⊢ ( 𝑧 = ( - 1 ·ℎ 𝑦 ) → ( 𝑥 +ℎ 𝑧 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) | |
| 32 | 31 | rspceeqv | ⊢ ( ( ( - 1 ·ℎ 𝑦 ) ∈ 𝐵 ∧ 𝐶 = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) |
| 33 | 30 32 | sylan | ⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) |
| 34 | 26 33 | syldan | ⊢ ( ( ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) |
| 35 | 34 | rexlimdva2 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) → ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ) ) |
| 36 | 19 35 | impbid | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |
| 37 | 36 | rexbidva | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝐶 = ( 𝑥 +ℎ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |
| 38 | 1 37 | bitrd | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 −ℎ 𝑦 ) ) ) |