This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of vector addition in terms of vector subtraction. (Contributed by NM, 10-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvaddsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 2 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
| 4 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) → ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) ) |
| 6 | hvm1neg | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = ( - - 1 ·ℎ 𝐵 ) ) | |
| 7 | 1 6 | mpan | ⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = ( - - 1 ·ℎ 𝐵 ) ) |
| 8 | negneg1e1 | ⊢ - - 1 = 1 | |
| 9 | 8 | oveq1i | ⊢ ( - - 1 ·ℎ 𝐵 ) = ( 1 ·ℎ 𝐵 ) |
| 10 | 7 9 | eqtrdi | ⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 1 ·ℎ 𝐵 ) ) |
| 11 | ax-hvmulid | ⊢ ( 𝐵 ∈ ℋ → ( 1 ·ℎ 𝐵 ) = 𝐵 ) | |
| 12 | 10 11 | eqtrd | ⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐵 ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐵 ) |
| 14 | 13 | oveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ 𝐵 ) ) |
| 15 | 5 14 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 −ℎ ( - 1 ·ℎ 𝐵 ) ) ) |