This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsel3 | |- ( ( A e. SH /\ B e. SH ) -> ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x -h y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shsel | |- ( ( A e. SH /\ B e. SH ) -> ( C e. ( A +H B ) <-> E. x e. A E. z e. B C = ( x +h z ) ) ) |
|
| 2 | id | |- ( C = ( x +h z ) -> C = ( x +h z ) ) |
|
| 3 | shel | |- ( ( A e. SH /\ x e. A ) -> x e. ~H ) |
|
| 4 | shel | |- ( ( B e. SH /\ z e. B ) -> z e. ~H ) |
|
| 5 | hvaddsubval | |- ( ( x e. ~H /\ z e. ~H ) -> ( x +h z ) = ( x -h ( -u 1 .h z ) ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( ( A e. SH /\ x e. A ) /\ ( B e. SH /\ z e. B ) ) -> ( x +h z ) = ( x -h ( -u 1 .h z ) ) ) |
| 7 | 6 | an4s | |- ( ( ( A e. SH /\ B e. SH ) /\ ( x e. A /\ z e. B ) ) -> ( x +h z ) = ( x -h ( -u 1 .h z ) ) ) |
| 8 | 7 | anassrs | |- ( ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) /\ z e. B ) -> ( x +h z ) = ( x -h ( -u 1 .h z ) ) ) |
| 9 | 2 8 | sylan9eqr | |- ( ( ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) /\ z e. B ) /\ C = ( x +h z ) ) -> C = ( x -h ( -u 1 .h z ) ) ) |
| 10 | neg1cn | |- -u 1 e. CC |
|
| 11 | shmulcl | |- ( ( B e. SH /\ -u 1 e. CC /\ z e. B ) -> ( -u 1 .h z ) e. B ) |
|
| 12 | 10 11 | mp3an2 | |- ( ( B e. SH /\ z e. B ) -> ( -u 1 .h z ) e. B ) |
| 13 | 12 | adantll | |- ( ( ( A e. SH /\ B e. SH ) /\ z e. B ) -> ( -u 1 .h z ) e. B ) |
| 14 | 13 | adantlr | |- ( ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) /\ z e. B ) -> ( -u 1 .h z ) e. B ) |
| 15 | oveq2 | |- ( y = ( -u 1 .h z ) -> ( x -h y ) = ( x -h ( -u 1 .h z ) ) ) |
|
| 16 | 15 | rspceeqv | |- ( ( ( -u 1 .h z ) e. B /\ C = ( x -h ( -u 1 .h z ) ) ) -> E. y e. B C = ( x -h y ) ) |
| 17 | 14 16 | sylan | |- ( ( ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) /\ z e. B ) /\ C = ( x -h ( -u 1 .h z ) ) ) -> E. y e. B C = ( x -h y ) ) |
| 18 | 9 17 | syldan | |- ( ( ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) /\ z e. B ) /\ C = ( x +h z ) ) -> E. y e. B C = ( x -h y ) ) |
| 19 | 18 | rexlimdva2 | |- ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) -> ( E. z e. B C = ( x +h z ) -> E. y e. B C = ( x -h y ) ) ) |
| 20 | id | |- ( C = ( x -h y ) -> C = ( x -h y ) ) |
|
| 21 | shel | |- ( ( B e. SH /\ y e. B ) -> y e. ~H ) |
|
| 22 | hvsubval | |- ( ( x e. ~H /\ y e. ~H ) -> ( x -h y ) = ( x +h ( -u 1 .h y ) ) ) |
|
| 23 | 3 21 22 | syl2an | |- ( ( ( A e. SH /\ x e. A ) /\ ( B e. SH /\ y e. B ) ) -> ( x -h y ) = ( x +h ( -u 1 .h y ) ) ) |
| 24 | 23 | an4s | |- ( ( ( A e. SH /\ B e. SH ) /\ ( x e. A /\ y e. B ) ) -> ( x -h y ) = ( x +h ( -u 1 .h y ) ) ) |
| 25 | 24 | anassrs | |- ( ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) /\ y e. B ) -> ( x -h y ) = ( x +h ( -u 1 .h y ) ) ) |
| 26 | 20 25 | sylan9eqr | |- ( ( ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) /\ y e. B ) /\ C = ( x -h y ) ) -> C = ( x +h ( -u 1 .h y ) ) ) |
| 27 | shmulcl | |- ( ( B e. SH /\ -u 1 e. CC /\ y e. B ) -> ( -u 1 .h y ) e. B ) |
|
| 28 | 10 27 | mp3an2 | |- ( ( B e. SH /\ y e. B ) -> ( -u 1 .h y ) e. B ) |
| 29 | 28 | adantll | |- ( ( ( A e. SH /\ B e. SH ) /\ y e. B ) -> ( -u 1 .h y ) e. B ) |
| 30 | 29 | adantlr | |- ( ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) /\ y e. B ) -> ( -u 1 .h y ) e. B ) |
| 31 | oveq2 | |- ( z = ( -u 1 .h y ) -> ( x +h z ) = ( x +h ( -u 1 .h y ) ) ) |
|
| 32 | 31 | rspceeqv | |- ( ( ( -u 1 .h y ) e. B /\ C = ( x +h ( -u 1 .h y ) ) ) -> E. z e. B C = ( x +h z ) ) |
| 33 | 30 32 | sylan | |- ( ( ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) /\ y e. B ) /\ C = ( x +h ( -u 1 .h y ) ) ) -> E. z e. B C = ( x +h z ) ) |
| 34 | 26 33 | syldan | |- ( ( ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) /\ y e. B ) /\ C = ( x -h y ) ) -> E. z e. B C = ( x +h z ) ) |
| 35 | 34 | rexlimdva2 | |- ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) -> ( E. y e. B C = ( x -h y ) -> E. z e. B C = ( x +h z ) ) ) |
| 36 | 19 35 | impbid | |- ( ( ( A e. SH /\ B e. SH ) /\ x e. A ) -> ( E. z e. B C = ( x +h z ) <-> E. y e. B C = ( x -h y ) ) ) |
| 37 | 36 | rexbidva | |- ( ( A e. SH /\ B e. SH ) -> ( E. x e. A E. z e. B C = ( x +h z ) <-> E. x e. A E. y e. B C = ( x -h y ) ) ) |
| 38 | 1 37 | bitrd | |- ( ( A e. SH /\ B e. SH ) -> ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x -h y ) ) ) |