This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modular law holds for subspace sum. Similar to part of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 23-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shmod.1 | ⊢ 𝐴 ∈ Sℋ | |
| shmod.2 | ⊢ 𝐵 ∈ Sℋ | ||
| shmod.3 | ⊢ 𝐶 ∈ Sℋ | ||
| Assertion | shmodsi | ⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shmod.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shmod.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | shmod.3 | ⊢ 𝐶 ∈ Sℋ | |
| 4 | elin | ⊢ ( 𝑧 ∈ ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) ↔ ( 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) ) | |
| 5 | 1 2 | shseli | ⊢ ( 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) |
| 6 | 3 | sheli | ⊢ ( 𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ ) |
| 7 | 1 | sheli | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ ) |
| 8 | 2 | sheli | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ℋ ) |
| 9 | hvsubadd | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 ↔ ( 𝑥 +ℎ 𝑦 ) = 𝑧 ) ) | |
| 10 | 6 7 8 9 | syl3an | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 ↔ ( 𝑥 +ℎ 𝑦 ) = 𝑧 ) ) |
| 11 | eqcom | ⊢ ( ( 𝑥 +ℎ 𝑦 ) = 𝑧 ↔ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) | |
| 12 | 10 11 | bitrdi | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 ↔ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 13 | 12 | 3expb | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 ↔ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 14 | 3 1 | shsvsi | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 −ℎ 𝑥 ) ∈ ( 𝐶 +ℋ 𝐴 ) ) |
| 15 | 3 1 | shscomi | ⊢ ( 𝐶 +ℋ 𝐴 ) = ( 𝐴 +ℋ 𝐶 ) |
| 16 | 14 15 | eleqtrdi | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 −ℎ 𝑥 ) ∈ ( 𝐴 +ℋ 𝐶 ) ) |
| 17 | 1 3 | shlesb1i | ⊢ ( 𝐴 ⊆ 𝐶 ↔ ( 𝐴 +ℋ 𝐶 ) = 𝐶 ) |
| 18 | 17 | biimpi | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 +ℋ 𝐶 ) = 𝐶 ) |
| 19 | 18 | eleq2d | ⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑧 −ℎ 𝑥 ) ∈ ( 𝐴 +ℋ 𝐶 ) ↔ ( 𝑧 −ℎ 𝑥 ) ∈ 𝐶 ) ) |
| 20 | 16 19 | imbitrid | ⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 −ℎ 𝑥 ) ∈ 𝐶 ) ) |
| 21 | eleq1 | ⊢ ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( ( 𝑧 −ℎ 𝑥 ) ∈ 𝐶 ↔ 𝑦 ∈ 𝐶 ) ) | |
| 22 | 21 | biimpd | ⊢ ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( ( 𝑧 −ℎ 𝑥 ) ∈ 𝐶 → 𝑦 ∈ 𝐶 ) ) |
| 23 | 20 22 | sylan9 | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝑧 −ℎ 𝑥 ) = 𝑦 ) → ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐶 ) ) |
| 24 | 23 | anim2d | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝑧 −ℎ 𝑥 ) = 𝑦 ) → ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 25 | elin | ⊢ ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 26 | 24 25 | imbitrrdi | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝑧 −ℎ 𝑥 ) = 𝑦 ) → ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 27 | 26 | ex | ⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 28 | 27 | com13 | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( 𝐴 ⊆ 𝐶 → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 29 | 28 | ancoms | ⊢ ( ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( 𝐴 ⊆ 𝐶 → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 30 | 29 | anasss | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( 𝐴 ⊆ 𝐶 → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 31 | 13 30 | sylbird | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝐴 ⊆ 𝐶 → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 32 | 31 | imp | ⊢ ( ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝐴 ⊆ 𝐶 → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 33 | 2 3 | shincli | ⊢ ( 𝐵 ∩ 𝐶 ) ∈ Sℋ |
| 34 | 1 33 | shsvai | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) |
| 35 | eleq1 | ⊢ ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) | |
| 36 | 34 35 | imbitrrid | ⊢ ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 37 | 36 | expd | ⊢ ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 38 | 37 | com12 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 39 | 38 | ad2antrl | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 40 | 39 | imp | ⊢ ( ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 41 | 32 40 | syld | ⊢ ( ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝐴 ⊆ 𝐶 → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 42 | 41 | exp31 | ⊢ ( 𝑧 ∈ 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝐴 ⊆ 𝐶 → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) ) |
| 43 | 42 | rexlimdvv | ⊢ ( 𝑧 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝐴 ⊆ 𝐶 → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 44 | 5 43 | biimtrid | ⊢ ( 𝑧 ∈ 𝐶 → ( 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝐴 ⊆ 𝐶 → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 45 | 44 | com13 | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝑧 ∈ 𝐶 → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
| 46 | 45 | impd | ⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 47 | 4 46 | biimtrid | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑧 ∈ ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 48 | 47 | ssrdv | ⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) |