This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modular law is implied by the closure of subspace sum. Part of proof of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 23-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shmod.1 | ⊢ 𝐴 ∈ Sℋ | |
| shmod.2 | ⊢ 𝐵 ∈ Sℋ | ||
| shmod.3 | ⊢ 𝐶 ∈ Sℋ | ||
| Assertion | shmodi | ⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝐴 ⊆ 𝐶 ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shmod.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shmod.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | shmod.3 | ⊢ 𝐶 ∈ Sℋ | |
| 4 | 1 2 3 | shmodsi | ⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) |
| 5 | ineq1 | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ) | |
| 6 | 5 | sseq1d | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ↔ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 7 | 4 6 | imbitrid | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 8 | 7 | imp | ⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝐴 ⊆ 𝐶 ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) |
| 9 | 2 3 | shincli | ⊢ ( 𝐵 ∩ 𝐶 ) ∈ Sℋ |
| 10 | 1 9 | shsleji | ⊢ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ 𝐶 ) ) |
| 11 | 8 10 | sstrdi | ⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝐴 ⊆ 𝐶 ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ) |