This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for subspace sum. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| shincl.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shscomi | ⊢ ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shincl.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | shscom | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) |