This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modular law holds for subspace sum. Similar to part of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 23-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shmod.1 | |- A e. SH |
|
| shmod.2 | |- B e. SH |
||
| shmod.3 | |- C e. SH |
||
| Assertion | shmodsi | |- ( A C_ C -> ( ( A +H B ) i^i C ) C_ ( A +H ( B i^i C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shmod.1 | |- A e. SH |
|
| 2 | shmod.2 | |- B e. SH |
|
| 3 | shmod.3 | |- C e. SH |
|
| 4 | elin | |- ( z e. ( ( A +H B ) i^i C ) <-> ( z e. ( A +H B ) /\ z e. C ) ) |
|
| 5 | 1 2 | shseli | |- ( z e. ( A +H B ) <-> E. x e. A E. y e. B z = ( x +h y ) ) |
| 6 | 3 | sheli | |- ( z e. C -> z e. ~H ) |
| 7 | 1 | sheli | |- ( x e. A -> x e. ~H ) |
| 8 | 2 | sheli | |- ( y e. B -> y e. ~H ) |
| 9 | hvsubadd | |- ( ( z e. ~H /\ x e. ~H /\ y e. ~H ) -> ( ( z -h x ) = y <-> ( x +h y ) = z ) ) |
|
| 10 | 6 7 8 9 | syl3an | |- ( ( z e. C /\ x e. A /\ y e. B ) -> ( ( z -h x ) = y <-> ( x +h y ) = z ) ) |
| 11 | eqcom | |- ( ( x +h y ) = z <-> z = ( x +h y ) ) |
|
| 12 | 10 11 | bitrdi | |- ( ( z e. C /\ x e. A /\ y e. B ) -> ( ( z -h x ) = y <-> z = ( x +h y ) ) ) |
| 13 | 12 | 3expb | |- ( ( z e. C /\ ( x e. A /\ y e. B ) ) -> ( ( z -h x ) = y <-> z = ( x +h y ) ) ) |
| 14 | 3 1 | shsvsi | |- ( ( z e. C /\ x e. A ) -> ( z -h x ) e. ( C +H A ) ) |
| 15 | 3 1 | shscomi | |- ( C +H A ) = ( A +H C ) |
| 16 | 14 15 | eleqtrdi | |- ( ( z e. C /\ x e. A ) -> ( z -h x ) e. ( A +H C ) ) |
| 17 | 1 3 | shlesb1i | |- ( A C_ C <-> ( A +H C ) = C ) |
| 18 | 17 | biimpi | |- ( A C_ C -> ( A +H C ) = C ) |
| 19 | 18 | eleq2d | |- ( A C_ C -> ( ( z -h x ) e. ( A +H C ) <-> ( z -h x ) e. C ) ) |
| 20 | 16 19 | imbitrid | |- ( A C_ C -> ( ( z e. C /\ x e. A ) -> ( z -h x ) e. C ) ) |
| 21 | eleq1 | |- ( ( z -h x ) = y -> ( ( z -h x ) e. C <-> y e. C ) ) |
|
| 22 | 21 | biimpd | |- ( ( z -h x ) = y -> ( ( z -h x ) e. C -> y e. C ) ) |
| 23 | 20 22 | sylan9 | |- ( ( A C_ C /\ ( z -h x ) = y ) -> ( ( z e. C /\ x e. A ) -> y e. C ) ) |
| 24 | 23 | anim2d | |- ( ( A C_ C /\ ( z -h x ) = y ) -> ( ( y e. B /\ ( z e. C /\ x e. A ) ) -> ( y e. B /\ y e. C ) ) ) |
| 25 | elin | |- ( y e. ( B i^i C ) <-> ( y e. B /\ y e. C ) ) |
|
| 26 | 24 25 | imbitrrdi | |- ( ( A C_ C /\ ( z -h x ) = y ) -> ( ( y e. B /\ ( z e. C /\ x e. A ) ) -> y e. ( B i^i C ) ) ) |
| 27 | 26 | ex | |- ( A C_ C -> ( ( z -h x ) = y -> ( ( y e. B /\ ( z e. C /\ x e. A ) ) -> y e. ( B i^i C ) ) ) ) |
| 28 | 27 | com13 | |- ( ( y e. B /\ ( z e. C /\ x e. A ) ) -> ( ( z -h x ) = y -> ( A C_ C -> y e. ( B i^i C ) ) ) ) |
| 29 | 28 | ancoms | |- ( ( ( z e. C /\ x e. A ) /\ y e. B ) -> ( ( z -h x ) = y -> ( A C_ C -> y e. ( B i^i C ) ) ) ) |
| 30 | 29 | anasss | |- ( ( z e. C /\ ( x e. A /\ y e. B ) ) -> ( ( z -h x ) = y -> ( A C_ C -> y e. ( B i^i C ) ) ) ) |
| 31 | 13 30 | sylbird | |- ( ( z e. C /\ ( x e. A /\ y e. B ) ) -> ( z = ( x +h y ) -> ( A C_ C -> y e. ( B i^i C ) ) ) ) |
| 32 | 31 | imp | |- ( ( ( z e. C /\ ( x e. A /\ y e. B ) ) /\ z = ( x +h y ) ) -> ( A C_ C -> y e. ( B i^i C ) ) ) |
| 33 | 2 3 | shincli | |- ( B i^i C ) e. SH |
| 34 | 1 33 | shsvai | |- ( ( x e. A /\ y e. ( B i^i C ) ) -> ( x +h y ) e. ( A +H ( B i^i C ) ) ) |
| 35 | eleq1 | |- ( z = ( x +h y ) -> ( z e. ( A +H ( B i^i C ) ) <-> ( x +h y ) e. ( A +H ( B i^i C ) ) ) ) |
|
| 36 | 34 35 | imbitrrid | |- ( z = ( x +h y ) -> ( ( x e. A /\ y e. ( B i^i C ) ) -> z e. ( A +H ( B i^i C ) ) ) ) |
| 37 | 36 | expd | |- ( z = ( x +h y ) -> ( x e. A -> ( y e. ( B i^i C ) -> z e. ( A +H ( B i^i C ) ) ) ) ) |
| 38 | 37 | com12 | |- ( x e. A -> ( z = ( x +h y ) -> ( y e. ( B i^i C ) -> z e. ( A +H ( B i^i C ) ) ) ) ) |
| 39 | 38 | ad2antrl | |- ( ( z e. C /\ ( x e. A /\ y e. B ) ) -> ( z = ( x +h y ) -> ( y e. ( B i^i C ) -> z e. ( A +H ( B i^i C ) ) ) ) ) |
| 40 | 39 | imp | |- ( ( ( z e. C /\ ( x e. A /\ y e. B ) ) /\ z = ( x +h y ) ) -> ( y e. ( B i^i C ) -> z e. ( A +H ( B i^i C ) ) ) ) |
| 41 | 32 40 | syld | |- ( ( ( z e. C /\ ( x e. A /\ y e. B ) ) /\ z = ( x +h y ) ) -> ( A C_ C -> z e. ( A +H ( B i^i C ) ) ) ) |
| 42 | 41 | exp31 | |- ( z e. C -> ( ( x e. A /\ y e. B ) -> ( z = ( x +h y ) -> ( A C_ C -> z e. ( A +H ( B i^i C ) ) ) ) ) ) |
| 43 | 42 | rexlimdvv | |- ( z e. C -> ( E. x e. A E. y e. B z = ( x +h y ) -> ( A C_ C -> z e. ( A +H ( B i^i C ) ) ) ) ) |
| 44 | 5 43 | biimtrid | |- ( z e. C -> ( z e. ( A +H B ) -> ( A C_ C -> z e. ( A +H ( B i^i C ) ) ) ) ) |
| 45 | 44 | com13 | |- ( A C_ C -> ( z e. ( A +H B ) -> ( z e. C -> z e. ( A +H ( B i^i C ) ) ) ) ) |
| 46 | 45 | impd | |- ( A C_ C -> ( ( z e. ( A +H B ) /\ z e. C ) -> z e. ( A +H ( B i^i C ) ) ) ) |
| 47 | 4 46 | biimtrid | |- ( A C_ C -> ( z e. ( ( A +H B ) i^i C ) -> z e. ( A +H ( B i^i C ) ) ) ) |
| 48 | 47 | ssrdv | |- ( A C_ C -> ( ( A +H B ) i^i C ) C_ ( A +H ( B i^i C ) ) ) |