This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shlesb1.1 | ⊢ 𝐴 ∈ Sℋ | |
| shlesb1.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shlesb1i | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 +ℋ 𝐵 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shlesb1.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shlesb1.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 4 | 3 | biantrur | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) ) |
| 5 | 2 1 2 | shslubi | ⊢ ( ( 𝐵 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) ↔ ( 𝐵 +ℋ 𝐴 ) ⊆ 𝐵 ) |
| 6 | 2 1 | shsub2i | ⊢ 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 7 | eqss | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = 𝐵 ↔ ( ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) | |
| 8 | 6 7 | mpbiran2 | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = 𝐵 ↔ ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐵 ) |
| 9 | 1 2 | shscomi | ⊢ ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) |
| 10 | 9 | sseq1i | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ 𝐵 ↔ ( 𝐵 +ℋ 𝐴 ) ⊆ 𝐵 ) |
| 11 | 8 10 | bitr2i | ⊢ ( ( 𝐵 +ℋ 𝐴 ) ⊆ 𝐵 ↔ ( 𝐴 +ℋ 𝐵 ) = 𝐵 ) |
| 12 | 4 5 11 | 3bitri | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 +ℋ 𝐵 ) = 𝐵 ) |