This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 26-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shatomistic.1 | ⊢ 𝐴 ∈ Sℋ | |
| Assertion | shatomistici | ⊢ 𝐴 = ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shatomistic.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | eleq1 | ⊢ ( 𝑦 = 0ℎ → ( 𝑦 ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ↔ 0ℎ ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) | |
| 3 | 1 | sheli | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
| 4 | spansnsh | ⊢ ( 𝑦 ∈ ℋ → ( span ‘ { 𝑦 } ) ∈ Sℋ ) | |
| 5 | spanid | ⊢ ( ( span ‘ { 𝑦 } ) ∈ Sℋ → ( span ‘ ( span ‘ { 𝑦 } ) ) = ( span ‘ { 𝑦 } ) ) | |
| 6 | 3 4 5 | 3syl | ⊢ ( 𝑦 ∈ 𝐴 → ( span ‘ ( span ‘ { 𝑦 } ) ) = ( span ‘ { 𝑦 } ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ ( span ‘ { 𝑦 } ) ) = ( span ‘ { 𝑦 } ) ) |
| 8 | spansna | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ { 𝑦 } ) ∈ HAtoms ) | |
| 9 | 3 8 | sylan | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ { 𝑦 } ) ∈ HAtoms ) |
| 10 | spansnss | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ) → ( span ‘ { 𝑦 } ) ⊆ 𝐴 ) | |
| 11 | 1 10 | mpan | ⊢ ( 𝑦 ∈ 𝐴 → ( span ‘ { 𝑦 } ) ⊆ 𝐴 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ { 𝑦 } ) ⊆ 𝐴 ) |
| 13 | sseq1 | ⊢ ( 𝑥 = ( span ‘ { 𝑦 } ) → ( 𝑥 ⊆ 𝐴 ↔ ( span ‘ { 𝑦 } ) ⊆ 𝐴 ) ) | |
| 14 | 13 | elrab | ⊢ ( ( span ‘ { 𝑦 } ) ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ↔ ( ( span ‘ { 𝑦 } ) ∈ HAtoms ∧ ( span ‘ { 𝑦 } ) ⊆ 𝐴 ) ) |
| 15 | 9 12 14 | sylanbrc | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ { 𝑦 } ) ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
| 16 | elssuni | ⊢ ( ( span ‘ { 𝑦 } ) ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → ( span ‘ { 𝑦 } ) ⊆ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) | |
| 17 | atssch | ⊢ HAtoms ⊆ Cℋ | |
| 18 | chsssh | ⊢ Cℋ ⊆ Sℋ | |
| 19 | 17 18 | sstri | ⊢ HAtoms ⊆ Sℋ |
| 20 | rabss2 | ⊢ ( HAtoms ⊆ Sℋ → { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) | |
| 21 | uniss | ⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } → ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) | |
| 22 | 19 20 21 | mp2b | ⊢ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } |
| 23 | unimax | ⊢ ( 𝐴 ∈ Sℋ → ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) | |
| 24 | 1 23 | ax-mp | ⊢ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } = 𝐴 |
| 25 | 1 | shssii | ⊢ 𝐴 ⊆ ℋ |
| 26 | 24 25 | eqsstri | ⊢ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ ℋ |
| 27 | 22 26 | sstri | ⊢ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ℋ |
| 28 | spanss | ⊢ ( ( ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ℋ ∧ ( span ‘ { 𝑦 } ) ⊆ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) → ( span ‘ ( span ‘ { 𝑦 } ) ) ⊆ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) | |
| 29 | 27 28 | mpan | ⊢ ( ( span ‘ { 𝑦 } ) ⊆ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → ( span ‘ ( span ‘ { 𝑦 } ) ) ⊆ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 30 | 15 16 29 | 3syl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ ( span ‘ { 𝑦 } ) ) ⊆ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 31 | 7 30 | eqsstrrd | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ { 𝑦 } ) ⊆ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 32 | spansnid | ⊢ ( 𝑦 ∈ ℋ → 𝑦 ∈ ( span ‘ { 𝑦 } ) ) | |
| 33 | 3 32 | syl | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( span ‘ { 𝑦 } ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → 𝑦 ∈ ( span ‘ { 𝑦 } ) ) |
| 35 | 31 34 | sseldd | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → 𝑦 ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 36 | spancl | ⊢ ( ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ℋ → ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∈ Sℋ ) | |
| 37 | sh0 | ⊢ ( ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∈ Sℋ → 0ℎ ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) | |
| 38 | 27 36 37 | mp2b | ⊢ 0ℎ ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
| 39 | 38 | a1i | ⊢ ( 𝑦 ∈ 𝐴 → 0ℎ ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 40 | 2 35 39 | pm2.61ne | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 41 | 40 | ssriv | ⊢ 𝐴 ⊆ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
| 42 | spanss | ⊢ ( ( ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ ℋ ∧ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) → ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ ( span ‘ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) ) | |
| 43 | 26 22 42 | mp2an | ⊢ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ ( span ‘ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) |
| 44 | 24 | fveq2i | ⊢ ( span ‘ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) = ( span ‘ 𝐴 ) |
| 45 | spanid | ⊢ ( 𝐴 ∈ Sℋ → ( span ‘ 𝐴 ) = 𝐴 ) | |
| 46 | 1 45 | ax-mp | ⊢ ( span ‘ 𝐴 ) = 𝐴 |
| 47 | 44 46 | eqtri | ⊢ ( span ‘ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) = 𝐴 |
| 48 | 43 47 | sseqtri | ⊢ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ 𝐴 |
| 49 | 41 48 | eqssi | ⊢ 𝐴 = ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |