This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 26-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shatomistic.1 | |- A e. SH |
|
| Assertion | shatomistici | |- A = ( span ` U. { x e. HAtoms | x C_ A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shatomistic.1 | |- A e. SH |
|
| 2 | eleq1 | |- ( y = 0h -> ( y e. ( span ` U. { x e. HAtoms | x C_ A } ) <-> 0h e. ( span ` U. { x e. HAtoms | x C_ A } ) ) ) |
|
| 3 | 1 | sheli | |- ( y e. A -> y e. ~H ) |
| 4 | spansnsh | |- ( y e. ~H -> ( span ` { y } ) e. SH ) |
|
| 5 | spanid | |- ( ( span ` { y } ) e. SH -> ( span ` ( span ` { y } ) ) = ( span ` { y } ) ) |
|
| 6 | 3 4 5 | 3syl | |- ( y e. A -> ( span ` ( span ` { y } ) ) = ( span ` { y } ) ) |
| 7 | 6 | adantr | |- ( ( y e. A /\ y =/= 0h ) -> ( span ` ( span ` { y } ) ) = ( span ` { y } ) ) |
| 8 | spansna | |- ( ( y e. ~H /\ y =/= 0h ) -> ( span ` { y } ) e. HAtoms ) |
|
| 9 | 3 8 | sylan | |- ( ( y e. A /\ y =/= 0h ) -> ( span ` { y } ) e. HAtoms ) |
| 10 | spansnss | |- ( ( A e. SH /\ y e. A ) -> ( span ` { y } ) C_ A ) |
|
| 11 | 1 10 | mpan | |- ( y e. A -> ( span ` { y } ) C_ A ) |
| 12 | 11 | adantr | |- ( ( y e. A /\ y =/= 0h ) -> ( span ` { y } ) C_ A ) |
| 13 | sseq1 | |- ( x = ( span ` { y } ) -> ( x C_ A <-> ( span ` { y } ) C_ A ) ) |
|
| 14 | 13 | elrab | |- ( ( span ` { y } ) e. { x e. HAtoms | x C_ A } <-> ( ( span ` { y } ) e. HAtoms /\ ( span ` { y } ) C_ A ) ) |
| 15 | 9 12 14 | sylanbrc | |- ( ( y e. A /\ y =/= 0h ) -> ( span ` { y } ) e. { x e. HAtoms | x C_ A } ) |
| 16 | elssuni | |- ( ( span ` { y } ) e. { x e. HAtoms | x C_ A } -> ( span ` { y } ) C_ U. { x e. HAtoms | x C_ A } ) |
|
| 17 | atssch | |- HAtoms C_ CH |
|
| 18 | chsssh | |- CH C_ SH |
|
| 19 | 17 18 | sstri | |- HAtoms C_ SH |
| 20 | rabss2 | |- ( HAtoms C_ SH -> { x e. HAtoms | x C_ A } C_ { x e. SH | x C_ A } ) |
|
| 21 | uniss | |- ( { x e. HAtoms | x C_ A } C_ { x e. SH | x C_ A } -> U. { x e. HAtoms | x C_ A } C_ U. { x e. SH | x C_ A } ) |
|
| 22 | 19 20 21 | mp2b | |- U. { x e. HAtoms | x C_ A } C_ U. { x e. SH | x C_ A } |
| 23 | unimax | |- ( A e. SH -> U. { x e. SH | x C_ A } = A ) |
|
| 24 | 1 23 | ax-mp | |- U. { x e. SH | x C_ A } = A |
| 25 | 1 | shssii | |- A C_ ~H |
| 26 | 24 25 | eqsstri | |- U. { x e. SH | x C_ A } C_ ~H |
| 27 | 22 26 | sstri | |- U. { x e. HAtoms | x C_ A } C_ ~H |
| 28 | spanss | |- ( ( U. { x e. HAtoms | x C_ A } C_ ~H /\ ( span ` { y } ) C_ U. { x e. HAtoms | x C_ A } ) -> ( span ` ( span ` { y } ) ) C_ ( span ` U. { x e. HAtoms | x C_ A } ) ) |
|
| 29 | 27 28 | mpan | |- ( ( span ` { y } ) C_ U. { x e. HAtoms | x C_ A } -> ( span ` ( span ` { y } ) ) C_ ( span ` U. { x e. HAtoms | x C_ A } ) ) |
| 30 | 15 16 29 | 3syl | |- ( ( y e. A /\ y =/= 0h ) -> ( span ` ( span ` { y } ) ) C_ ( span ` U. { x e. HAtoms | x C_ A } ) ) |
| 31 | 7 30 | eqsstrrd | |- ( ( y e. A /\ y =/= 0h ) -> ( span ` { y } ) C_ ( span ` U. { x e. HAtoms | x C_ A } ) ) |
| 32 | spansnid | |- ( y e. ~H -> y e. ( span ` { y } ) ) |
|
| 33 | 3 32 | syl | |- ( y e. A -> y e. ( span ` { y } ) ) |
| 34 | 33 | adantr | |- ( ( y e. A /\ y =/= 0h ) -> y e. ( span ` { y } ) ) |
| 35 | 31 34 | sseldd | |- ( ( y e. A /\ y =/= 0h ) -> y e. ( span ` U. { x e. HAtoms | x C_ A } ) ) |
| 36 | spancl | |- ( U. { x e. HAtoms | x C_ A } C_ ~H -> ( span ` U. { x e. HAtoms | x C_ A } ) e. SH ) |
|
| 37 | sh0 | |- ( ( span ` U. { x e. HAtoms | x C_ A } ) e. SH -> 0h e. ( span ` U. { x e. HAtoms | x C_ A } ) ) |
|
| 38 | 27 36 37 | mp2b | |- 0h e. ( span ` U. { x e. HAtoms | x C_ A } ) |
| 39 | 38 | a1i | |- ( y e. A -> 0h e. ( span ` U. { x e. HAtoms | x C_ A } ) ) |
| 40 | 2 35 39 | pm2.61ne | |- ( y e. A -> y e. ( span ` U. { x e. HAtoms | x C_ A } ) ) |
| 41 | 40 | ssriv | |- A C_ ( span ` U. { x e. HAtoms | x C_ A } ) |
| 42 | spanss | |- ( ( U. { x e. SH | x C_ A } C_ ~H /\ U. { x e. HAtoms | x C_ A } C_ U. { x e. SH | x C_ A } ) -> ( span ` U. { x e. HAtoms | x C_ A } ) C_ ( span ` U. { x e. SH | x C_ A } ) ) |
|
| 43 | 26 22 42 | mp2an | |- ( span ` U. { x e. HAtoms | x C_ A } ) C_ ( span ` U. { x e. SH | x C_ A } ) |
| 44 | 24 | fveq2i | |- ( span ` U. { x e. SH | x C_ A } ) = ( span ` A ) |
| 45 | spanid | |- ( A e. SH -> ( span ` A ) = A ) |
|
| 46 | 1 45 | ax-mp | |- ( span ` A ) = A |
| 47 | 44 46 | eqtri | |- ( span ` U. { x e. SH | x C_ A } ) = A |
| 48 | 43 47 | sseqtri | |- ( span ` U. { x e. HAtoms | x C_ A } ) C_ A |
| 49 | 41 48 | eqssi | |- A = ( span ` U. { x e. HAtoms | x C_ A } ) |