This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnss | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ ℋ ) | |
| 2 | elspansn | ⊢ ( 𝐵 ∈ ℋ → ( 𝑥 ∈ ( span ‘ { 𝐵 } ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( 𝑥 ∈ ( span ‘ { 𝐵 } ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) ) ) |
| 4 | shmulcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ ℂ ∧ 𝐵 ∈ 𝐴 ) → ( 𝑦 ·ℎ 𝐵 ) ∈ 𝐴 ) | |
| 5 | eleq1a | ⊢ ( ( 𝑦 ·ℎ 𝐵 ) ∈ 𝐴 → ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → 𝑥 ∈ 𝐴 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ ℂ ∧ 𝐵 ∈ 𝐴 ) → ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → 𝑥 ∈ 𝐴 ) ) |
| 7 | 6 | 3exp | ⊢ ( 𝐴 ∈ Sℋ → ( 𝑦 ∈ ℂ → ( 𝐵 ∈ 𝐴 → ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → 𝑥 ∈ 𝐴 ) ) ) ) |
| 8 | 7 | com23 | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐵 ∈ 𝐴 → ( 𝑦 ∈ ℂ → ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → 𝑥 ∈ 𝐴 ) ) ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( 𝑦 ∈ ℂ → ( 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → 𝑥 ∈ 𝐴 ) ) ) |
| 10 | 9 | rexlimdv | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ 𝐵 ) → 𝑥 ∈ 𝐴 ) ) |
| 11 | 3 10 | sylbid | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( 𝑥 ∈ ( span ‘ { 𝐵 } ) → 𝑥 ∈ 𝐴 ) ) |
| 12 | 11 | ssrdv | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) |