This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monomorphism of sets is an injection. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcmon.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| setcmon.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| setcmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| setcmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| setcmon.h | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | ||
| Assertion | setcmon | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ 𝐹 : 𝑋 –1-1→ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcmon.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| 2 | setcmon.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | setcmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 4 | setcmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 5 | setcmon.h | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 8 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 9 | 1 | setccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 11 | 1 2 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 12 | 3 11 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 13 | 4 11 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 14 | 6 7 8 5 10 12 13 | monhom | ⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) ⊆ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 15 | 14 | sselda | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 16 | 1 2 7 3 4 | elsetchom | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 17 | 16 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 18 | 15 17 | syldan | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 19 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 20 | 19 | sneqd | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → { ( 𝐹 ‘ 𝑥 ) } = { ( 𝐹 ‘ 𝑦 ) } ) |
| 21 | 20 | xpeq2d | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { ( 𝐹 ‘ 𝑥 ) } ) = ( 𝑋 × { ( 𝐹 ‘ 𝑦 ) } ) ) |
| 22 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 23 | 22 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 Fn 𝑋 ) |
| 24 | simprll | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 ∈ 𝑋 ) | |
| 25 | fcoconst | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∘ ( 𝑋 × { 𝑥 } ) ) = ( 𝑋 × { ( 𝐹 ‘ 𝑥 ) } ) ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ∘ ( 𝑋 × { 𝑥 } ) ) = ( 𝑋 × { ( 𝐹 ‘ 𝑥 ) } ) ) |
| 27 | simprlr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝑋 ) | |
| 28 | fcoconst | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ∘ ( 𝑋 × { 𝑦 } ) ) = ( 𝑋 × { ( 𝐹 ‘ 𝑦 ) } ) ) | |
| 29 | 23 27 28 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ∘ ( 𝑋 × { 𝑦 } ) ) = ( 𝑋 × { ( 𝐹 ‘ 𝑦 ) } ) ) |
| 30 | 21 26 29 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ∘ ( 𝑋 × { 𝑥 } ) ) = ( 𝐹 ∘ ( 𝑋 × { 𝑦 } ) ) ) |
| 31 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑈 ∈ 𝑉 ) |
| 32 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑋 ∈ 𝑈 ) |
| 33 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑌 ∈ 𝑈 ) |
| 34 | fconst6g | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝑋 × { 𝑥 } ) : 𝑋 ⟶ 𝑋 ) | |
| 35 | 24 34 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { 𝑥 } ) : 𝑋 ⟶ 𝑋 ) |
| 36 | 1 31 8 32 32 33 35 22 | setcco | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑥 } ) ) = ( 𝐹 ∘ ( 𝑋 × { 𝑥 } ) ) ) |
| 37 | fconst6g | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝑋 × { 𝑦 } ) : 𝑋 ⟶ 𝑋 ) | |
| 38 | 27 37 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { 𝑦 } ) : 𝑋 ⟶ 𝑋 ) |
| 39 | 1 31 8 32 32 33 38 22 | setcco | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑦 } ) ) = ( 𝐹 ∘ ( 𝑋 × { 𝑦 } ) ) ) |
| 40 | 30 36 39 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑥 } ) ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑦 } ) ) ) |
| 41 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐶 ∈ Cat ) |
| 42 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 43 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 44 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) | |
| 45 | 1 31 7 32 32 | elsetchom | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑋 × { 𝑥 } ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ ( 𝑋 × { 𝑥 } ) : 𝑋 ⟶ 𝑋 ) ) |
| 46 | 35 45 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { 𝑥 } ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 47 | 1 31 7 32 32 | elsetchom | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑋 × { 𝑦 } ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ ( 𝑋 × { 𝑦 } ) : 𝑋 ⟶ 𝑋 ) ) |
| 48 | 38 47 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { 𝑦 } ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 49 | 6 7 8 5 41 42 43 42 44 46 48 | moni | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑥 } ) ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑦 } ) ) ↔ ( 𝑋 × { 𝑥 } ) = ( 𝑋 × { 𝑦 } ) ) ) |
| 50 | 40 49 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { 𝑥 } ) = ( 𝑋 × { 𝑦 } ) ) |
| 51 | 50 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑋 × { 𝑥 } ) ‘ 𝑥 ) = ( ( 𝑋 × { 𝑦 } ) ‘ 𝑥 ) ) |
| 52 | vex | ⊢ 𝑥 ∈ V | |
| 53 | 52 | fvconst2 | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑋 × { 𝑥 } ) ‘ 𝑥 ) = 𝑥 ) |
| 54 | 24 53 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑋 × { 𝑥 } ) ‘ 𝑥 ) = 𝑥 ) |
| 55 | vex | ⊢ 𝑦 ∈ V | |
| 56 | 55 | fvconst2 | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑋 × { 𝑦 } ) ‘ 𝑥 ) = 𝑦 ) |
| 57 | 24 56 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑋 × { 𝑦 } ) ‘ 𝑥 ) = 𝑦 ) |
| 58 | 51 54 57 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
| 59 | 58 | expr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 60 | 59 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 61 | dff13 | ⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 62 | 18 60 61 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
| 63 | f1f | ⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 64 | 16 | biimpar | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 65 | 63 64 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 66 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 67 | 66 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → ( 𝑧 ∈ 𝑈 ↔ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
| 68 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑈 ∈ 𝑉 ) |
| 69 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑧 ∈ 𝑈 ) | |
| 70 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑋 ∈ 𝑈 ) |
| 71 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑌 ∈ 𝑈 ) |
| 72 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 73 | 1 68 7 69 70 | elsetchom | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ 𝑔 : 𝑧 ⟶ 𝑋 ) ) |
| 74 | 72 73 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑔 : 𝑧 ⟶ 𝑋 ) |
| 75 | 63 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 76 | 1 68 8 69 70 71 74 75 | setcco | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ∘ 𝑔 ) ) |
| 77 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 78 | 1 68 7 69 70 | elsetchom | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ ℎ : 𝑧 ⟶ 𝑋 ) ) |
| 79 | 77 78 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ℎ : 𝑧 ⟶ 𝑋 ) |
| 80 | 1 68 8 69 70 71 79 75 | setcco | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) = ( 𝐹 ∘ ℎ ) ) |
| 81 | 76 80 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ↔ ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ℎ ) ) ) |
| 82 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) | |
| 83 | cocan1 | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝑔 : 𝑧 ⟶ 𝑋 ∧ ℎ : 𝑧 ⟶ 𝑋 ) → ( ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ℎ ) ↔ 𝑔 = ℎ ) ) | |
| 84 | 82 74 79 83 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ℎ ) ↔ 𝑔 = ℎ ) ) |
| 85 | 84 | biimpd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ℎ ) → 𝑔 = ℎ ) ) |
| 86 | 81 85 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
| 87 | 86 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
| 88 | 87 | ralrimivva | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑧 ∈ 𝑈 ) → ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
| 89 | 88 | ex | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → ( 𝑧 ∈ 𝑈 → ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
| 90 | 67 89 | sylbird | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → ( 𝑧 ∈ ( Base ‘ 𝐶 ) → ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
| 91 | 90 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
| 92 | 6 7 8 5 10 12 13 | ismon2 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
| 93 | 92 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
| 94 | 65 91 93 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) |
| 95 | 62 94 | impbida | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ 𝐹 : 𝑋 –1-1→ 𝑌 ) ) |