This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| ismon.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| ismon.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| ismon.s | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | ||
| ismon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| ismon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ismon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | monhom | ⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | ismon.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | ismon.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | ismon.s | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | |
| 5 | ismon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | ismon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | ismon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | 1 2 3 4 5 6 7 | ismon | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) ) |
| 9 | simpl | ⊢ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 10 | 8 9 | biimtrdi | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝑀 𝑌 ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 11 | 10 | ssrdv | ⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |