This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence whose iteration function ignores the second argument is only affected by the first point of the initial value function. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | algrf.1 | |- Z = ( ZZ>= ` M ) |
|
| algrf.2 | |- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
||
| Assertion | seq1st | |- ( ( M e. ZZ /\ A e. V ) -> R = seq M ( ( F o. 1st ) , { <. M , A >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | algrf.2 | |- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
|
| 3 | seqfn | |- ( M e. ZZ -> seq M ( ( F o. 1st ) , ( Z X. { A } ) ) Fn ( ZZ>= ` M ) ) |
|
| 4 | 3 | adantr | |- ( ( M e. ZZ /\ A e. V ) -> seq M ( ( F o. 1st ) , ( Z X. { A } ) ) Fn ( ZZ>= ` M ) ) |
| 5 | seqfn | |- ( M e. ZZ -> seq M ( ( F o. 1st ) , { <. M , A >. } ) Fn ( ZZ>= ` M ) ) |
|
| 6 | 5 | adantr | |- ( ( M e. ZZ /\ A e. V ) -> seq M ( ( F o. 1st ) , { <. M , A >. } ) Fn ( ZZ>= ` M ) ) |
| 7 | fveq2 | |- ( y = M -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) ) |
|
| 8 | fveq2 | |- ( y = M -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( y = M -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) <-> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) ) |
| 10 | 9 | imbi2d | |- ( y = M -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) ) <-> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) ) ) |
| 11 | fveq2 | |- ( y = x -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) |
|
| 12 | fveq2 | |- ( y = x -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
|
| 13 | 11 12 | eqeq12d | |- ( y = x -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) <-> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
| 14 | 13 | imbi2d | |- ( y = x -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) ) <-> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) ) |
| 15 | fveq2 | |- ( y = ( x + 1 ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) ) |
|
| 16 | fveq2 | |- ( y = ( x + 1 ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) |
|
| 17 | 15 16 | eqeq12d | |- ( y = ( x + 1 ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) <-> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) |
| 18 | 17 | imbi2d | |- ( y = ( x + 1 ) -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` y ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` y ) ) <-> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) ) |
| 19 | seq1 | |- ( M e. ZZ -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
|
| 20 | 19 | adantr | |- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
| 21 | seq1 | |- ( M e. ZZ -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) = ( { <. M , A >. } ` M ) ) |
|
| 22 | 21 | adantr | |- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) = ( { <. M , A >. } ` M ) ) |
| 23 | id | |- ( A e. V -> A e. V ) |
|
| 24 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 25 | 24 1 | eleqtrrdi | |- ( M e. ZZ -> M e. Z ) |
| 26 | fvconst2g | |- ( ( A e. V /\ M e. Z ) -> ( ( Z X. { A } ) ` M ) = A ) |
|
| 27 | 23 25 26 | syl2anr | |- ( ( M e. ZZ /\ A e. V ) -> ( ( Z X. { A } ) ` M ) = A ) |
| 28 | fvsng | |- ( ( M e. ZZ /\ A e. V ) -> ( { <. M , A >. } ` M ) = A ) |
|
| 29 | 27 28 | eqtr4d | |- ( ( M e. ZZ /\ A e. V ) -> ( ( Z X. { A } ) ` M ) = ( { <. M , A >. } ` M ) ) |
| 30 | 22 29 | eqtr4d | |- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
| 31 | 20 30 | eqtr4d | |- ( ( M e. ZZ /\ A e. V ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) |
| 32 | 31 | ex | |- ( M e. ZZ -> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` M ) ) ) |
| 33 | fveq2 | |- ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) -> ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
|
| 34 | seqp1 | |- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ( F o. 1st ) ( ( Z X. { A } ) ` ( x + 1 ) ) ) ) |
|
| 35 | fvex | |- ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) e. _V |
|
| 36 | fvex | |- ( ( Z X. { A } ) ` ( x + 1 ) ) e. _V |
|
| 37 | 35 36 | opco1i | |- ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ( F o. 1st ) ( ( Z X. { A } ) ` ( x + 1 ) ) ) = ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) |
| 38 | 34 37 | eqtrdi | |- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) ) |
| 39 | seqp1 | |- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) = ( ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ( F o. 1st ) ( { <. M , A >. } ` ( x + 1 ) ) ) ) |
|
| 40 | fvex | |- ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) e. _V |
|
| 41 | fvex | |- ( { <. M , A >. } ` ( x + 1 ) ) e. _V |
|
| 42 | 40 41 | opco1i | |- ( ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ( F o. 1st ) ( { <. M , A >. } ` ( x + 1 ) ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
| 43 | 39 42 | eqtrdi | |- ( x e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
| 44 | 38 43 | eqeq12d | |- ( x e. ( ZZ>= ` M ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) <-> ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) ) |
| 45 | 44 | adantl | |- ( ( A e. V /\ x e. ( ZZ>= ` M ) ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) <-> ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) ) = ( F ` ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) ) |
| 46 | 33 45 | imbitrrid | |- ( ( A e. V /\ x e. ( ZZ>= ` M ) ) -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) |
| 47 | 46 | expcom | |- ( x e. ( ZZ>= ` M ) -> ( A e. V -> ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) ) |
| 48 | 47 | a2d | |- ( x e. ( ZZ>= ` M ) -> ( ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) -> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( x + 1 ) ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` ( x + 1 ) ) ) ) ) |
| 49 | 10 14 18 14 32 48 | uzind4 | |- ( x e. ( ZZ>= ` M ) -> ( A e. V -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) ) |
| 50 | 49 | impcom | |- ( ( A e. V /\ x e. ( ZZ>= ` M ) ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
| 51 | 50 | adantll | |- ( ( ( M e. ZZ /\ A e. V ) /\ x e. ( ZZ>= ` M ) ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` x ) = ( seq M ( ( F o. 1st ) , { <. M , A >. } ) ` x ) ) |
| 52 | 4 6 51 | eqfnfvd | |- ( ( M e. ZZ /\ A e. V ) -> seq M ( ( F o. 1st ) , ( Z X. { A } ) ) = seq M ( ( F o. 1st ) , { <. M , A >. } ) ) |
| 53 | 2 52 | eqtrid | |- ( ( M e. ZZ /\ A e. V ) -> R = seq M ( ( F o. 1st ) , { <. M , A >. } ) ) |