This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satffun | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfv0fun | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) |
| 3 | fveq2 | ⊢ ( 𝑁 = ∅ → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) | |
| 4 | 3 | funeqd | ⊢ ( 𝑁 = ∅ → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ) |
| 5 | 2 4 | imbitrrid | ⊢ ( 𝑁 = ∅ → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 6 | df-ne | ⊢ ( 𝑁 ≠ ∅ ↔ ¬ 𝑁 = ∅ ) | |
| 7 | nnsuc | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 ) | |
| 8 | suceq | ⊢ ( 𝑥 = ∅ → suc 𝑥 = suc ∅ ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝑥 = ∅ → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) ) |
| 10 | 9 | funeqd | ⊢ ( 𝑥 = ∅ → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) ) ) ) |
| 12 | suceq | ⊢ ( 𝑥 = 𝑦 → suc 𝑥 = suc 𝑦 ) | |
| 13 | 12 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) |
| 14 | 13 | funeqd | ⊢ ( 𝑥 = 𝑦 → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) ) ) |
| 16 | suceq | ⊢ ( 𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦 ) | |
| 17 | 16 | fveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) |
| 18 | 17 | funeqd | ⊢ ( 𝑥 = suc 𝑦 → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) ) |
| 20 | suceq | ⊢ ( 𝑥 = 𝑛 → suc 𝑥 = suc 𝑛 ) | |
| 21 | 20 | fveq2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) |
| 22 | 21 | funeqd | ⊢ ( 𝑥 = 𝑛 → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) |
| 23 | 22 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑥 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) ) |
| 24 | satffunlem1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) ) | |
| 25 | pm2.27 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) ) | |
| 26 | satffunlem2 | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) | |
| 27 | 26 | expcom | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑦 ∈ ω → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) ) |
| 28 | 27 | com23 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) → ( 𝑦 ∈ ω → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) ) |
| 29 | 25 28 | syld | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) → ( 𝑦 ∈ ω → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) ) |
| 30 | 29 | com13 | ⊢ ( 𝑦 ∈ ω → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑦 ) ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑦 ) ) ) ) |
| 31 | 11 15 19 23 24 30 | finds | ⊢ ( 𝑛 ∈ ω → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑁 = suc 𝑛 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) |
| 33 | fveq2 | ⊢ ( 𝑁 = suc 𝑛 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) | |
| 34 | 33 | funeqd | ⊢ ( 𝑁 = suc 𝑛 → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ↔ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) |
| 35 | 34 | imbi2d | ⊢ ( 𝑁 = suc 𝑛 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) ) |
| 36 | 35 | adantl | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑁 = suc 𝑛 ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑛 ) ) ) ) |
| 37 | 32 36 | mpbird | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑁 = suc 𝑛 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 38 | 37 | rexlimiva | ⊢ ( ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 39 | 7 38 | syl | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 40 | 39 | expcom | ⊢ ( 𝑁 ≠ ∅ → ( 𝑁 ∈ ω → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 41 | 6 40 | sylbir | ⊢ ( ¬ 𝑁 = ∅ → ( 𝑁 ∈ ω → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 42 | 41 | com13 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑁 ∈ ω → ( ¬ 𝑁 = ∅ → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 43 | 42 | 3impia | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ¬ 𝑁 = ∅ → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 44 | 43 | com12 | ⊢ ( ¬ 𝑁 = ∅ → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 45 | 5 44 | pm2.61i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |