This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Trichotomy of equinumerosity and strict dominance. This theorem is equivalent to the Axiom of Choice. Theorem 8 of Suppes p. 242. (Contributed by NM, 4-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | entric | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ∨ 𝐵 ≺ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domtri | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) | |
| 2 | 1 | biimprd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵 ) ) |
| 3 | brdom2 | ⊢ ( 𝐴 ≼ 𝐵 ↔ ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ) | |
| 4 | 2 3 | imbitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝐵 ≺ 𝐴 → ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ) ) |
| 5 | 4 | con1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) → 𝐵 ≺ 𝐴 ) ) |
| 6 | 5 | orrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ∨ 𝐵 ≺ 𝐴 ) ) |
| 7 | df-3or | ⊢ ( ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ∨ 𝐵 ≺ 𝐴 ) ↔ ( ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ∨ 𝐵 ≺ 𝐴 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ∨ 𝐵 ≺ 𝐴 ) ) |