This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the value of the satisfaction predicate as function over wff codes in the model M and the binary relation E on M at the code U for a wff using e. , -/\ , A. is a valuation S :om --> M of the variables (v0 = ( S(/) ) , v_1 = ( S1o ) , etc.) so that U is true under the assignment S . (Contributed by AV, 29-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satfvel | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ) → 𝑆 : ω ⟶ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfun | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) | |
| 2 | ffvelcdm | ⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ∈ 𝒫 ( 𝑀 ↑m ω ) ) | |
| 3 | fvex | ⊢ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ∈ V | |
| 4 | 3 | elpw | ⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ∈ 𝒫 ( 𝑀 ↑m ω ) ↔ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ⊆ ( 𝑀 ↑m ω ) ) |
| 5 | ssel | ⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ⊆ ( 𝑀 ↑m ω ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 ∈ ( 𝑀 ↑m ω ) ) ) | |
| 6 | elmapi | ⊢ ( 𝑆 ∈ ( 𝑀 ↑m ω ) → 𝑆 : ω ⟶ 𝑀 ) | |
| 7 | 5 6 | syl6 | ⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ⊆ ( 𝑀 ↑m ω ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 : ω ⟶ 𝑀 ) ) |
| 8 | 4 7 | sylbi | ⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ∈ 𝒫 ( 𝑀 ↑m ω ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 : ω ⟶ 𝑀 ) ) |
| 9 | 2 8 | syl | ⊢ ( ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 : ω ⟶ 𝑀 ) ) |
| 10 | 9 | ex | ⊢ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) → ( 𝑈 ∈ ( Fmla ‘ ω ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 : ω ⟶ 𝑀 ) ) ) |
| 11 | 1 10 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑈 ∈ ( Fmla ‘ ω ) → ( 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) → 𝑆 : ω ⟶ 𝑀 ) ) ) |
| 12 | 11 | 3imp | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑈 ∈ ( Fmla ‘ ω ) ∧ 𝑆 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) ‘ 𝑈 ) ) → 𝑆 : ω ⟶ 𝑀 ) |