This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The satisfaction predicate as function over wff codes in the model M and the binary relation E on M . (Contributed by AV, 28-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satff | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) : ( Fmla ‘ 𝑁 ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satffun | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) | |
| 2 | satfdmfmla | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( Fmla ‘ 𝑁 ) ) | |
| 3 | df-fn | ⊢ ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) Fn ( Fmla ‘ 𝑁 ) ↔ ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∧ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( Fmla ‘ 𝑁 ) ) ) | |
| 4 | 1 2 3 | sylanbrc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) Fn ( Fmla ‘ 𝑁 ) ) |
| 5 | satfrnmapom | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ 𝒫 ( 𝑀 ↑m ω ) ) | |
| 6 | df-f | ⊢ ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) : ( Fmla ‘ 𝑁 ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ↔ ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) Fn ( Fmla ‘ 𝑁 ) ∧ ran ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ 𝒫 ( 𝑀 ↑m ω ) ) ) | |
| 7 | 4 5 6 | sylanbrc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) : ( Fmla ‘ 𝑁 ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) |