This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| Assertion | rrxip | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| 2 | rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 3 | 1 2 | rrxprds | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ 𝐻 ) = ( ·𝑖 ‘ ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) ) |
| 5 | eqid | ⊢ ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) | |
| 6 | eqid | ⊢ ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) = ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) | |
| 7 | 5 6 | tcphip | ⊢ ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) = ( ·𝑖 ‘ ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) |
| 8 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 9 | eqid | ⊢ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) = ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) | |
| 10 | eqid | ⊢ ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) | |
| 11 | 9 10 | ressip | ⊢ ( 𝐵 ∈ V → ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) |
| 12 | 8 11 | ax-mp | ⊢ ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) |
| 13 | eqid | ⊢ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) = ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) | |
| 14 | refld | ⊢ ℝfld ∈ Field | |
| 15 | 14 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → ℝfld ∈ Field ) |
| 16 | snex | ⊢ { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ∈ V | |
| 17 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ∈ V ) → ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ∈ V ) | |
| 18 | 16 17 | mpan2 | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ∈ V ) |
| 19 | eqid | ⊢ ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) | |
| 20 | fvex | ⊢ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ∈ V | |
| 21 | 20 | snnz | ⊢ { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ≠ ∅ |
| 22 | dmxp | ⊢ ( { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ≠ ∅ → dom ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) = 𝐼 ) | |
| 23 | 21 22 | ax-mp | ⊢ dom ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) = 𝐼 |
| 24 | 23 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → dom ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) = 𝐼 ) |
| 25 | 13 15 18 19 24 10 | prdsip | ⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) , 𝑔 ∈ ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 26 | 13 15 18 19 24 | prdsbas | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ) |
| 27 | eqidd | ⊢ ( 𝑥 ∈ 𝐼 → ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) | |
| 28 | rebase | ⊢ ℝ = ( Base ‘ ℝfld ) | |
| 29 | 28 | eqimssi | ⊢ ℝ ⊆ ( Base ‘ ℝfld ) |
| 30 | 29 | a1i | ⊢ ( 𝑥 ∈ 𝐼 → ℝ ⊆ ( Base ‘ ℝfld ) ) |
| 31 | 27 30 | srabase | ⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ ℝfld ) = ( Base ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) ) |
| 32 | 28 | a1i | ⊢ ( 𝑥 ∈ 𝐼 → ℝ = ( Base ‘ ℝfld ) ) |
| 33 | 20 | fvconst2 | ⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) = ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) |
| 34 | 33 | fveq2d | ⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) = ( Base ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) ) |
| 35 | 31 32 34 | 3eqtr4rd | ⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) = ℝ ) |
| 36 | 35 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) = ℝ ) |
| 37 | 36 | ixpeq2dva | ⊢ ( 𝐼 ∈ 𝑉 → X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ℝ ) |
| 38 | reex | ⊢ ℝ ∈ V | |
| 39 | ixpconstg | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ℝ ∈ V ) → X 𝑥 ∈ 𝐼 ℝ = ( ℝ ↑m 𝐼 ) ) | |
| 40 | 38 39 | mpan2 | ⊢ ( 𝐼 ∈ 𝑉 → X 𝑥 ∈ 𝐼 ℝ = ( ℝ ↑m 𝐼 ) ) |
| 41 | 26 37 40 | 3eqtrd | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( ℝ ↑m 𝐼 ) ) |
| 42 | remulr | ⊢ · = ( .r ‘ ℝfld ) | |
| 43 | 33 30 | sraip | ⊢ ( 𝑥 ∈ 𝐼 → ( .r ‘ ℝfld ) = ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ) |
| 44 | 42 43 | eqtr2id | ⊢ ( 𝑥 ∈ 𝐼 → ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) = · ) |
| 45 | 44 | oveqd | ⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) |
| 46 | 45 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) |
| 47 | 46 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 48 | 47 | oveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 49 | 41 41 48 | mpoeq123dv | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) , 𝑔 ∈ ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 50 | 25 49 | eqtrd | ⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 51 | 12 50 | eqtr3id | ⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 52 | 7 51 | eqtr3id | ⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 53 | 4 52 | eqtr2d | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝐻 ) ) |